期刊文献+

醇在载钯碳化钨/碳纳米管催化剂上的氧化 被引量:5

Alcohol Oxidation on Pd Catalyst Supported on Tungsten Carbides/Carbon Nanotubes
下载PDF
导出
摘要 用交替微波法制备了碳化钨与多壁碳纳米管复合材料(WC/MWCNT),以该材料为载体制备了Pd基催化剂(Pd-WC/MWCNT),并将催化剂用于醇的催化氧化反应.结果表明,Pd-WC/MWCNT催化剂对乙醇的催化氧化活性是Pd/C催化剂的5倍.交换电流密度测量和反应活化能计算表明,Pd-WC/MWCNT催化剂对乙醇催化氧化的交换电流密度比Pd/C大两个数量级,反应活化能低一倍以上.Pd-WC/MWCNT催化剂催化氧化乙醇性能的大幅度提高是碳化钨与Pd颗粒的协同效应和碳纳米管的结构效应共同作用的结果. A material of tungsten carbides on multiwalled carbon nanotubes (WC/MWCNT) was prepared by an intermittent microwave heating method and used as the support to load Pd nanoparticles (Pd-WC/MWCNT) for alcohol oxidation. Different surface, morphological, and electrochemical techniques were used to characterize the physical and catalytic properties of the novel catalysts. Pd/C, Pd/MWCNT, and Pd-WC/C catalysts were also prepared for comparison. The Pd-WC/MWCNT catalyst shows five times higher catalytic activity for ethanol oxidation compared to the Pd/C catalyst. Pd-WC/MWCNT is two orders higher in exchange current density and over one time lower in activation energy than the Pd/C catalyst. This proves the fast kinetics of the Pd-WC/MWCNT catalyst for the oxidation of ethanol in alkaline solution. The Pd-WC/MWCNT catalyst is also highly active for the oxidation of ethylene glycol and methanol. However, the oxidation of ethanol gives the lowest onset potential. The enhancement in the catalytic activity is believed due to synergistic effect between Pd nanoparticles and the tungsten carbides and the structure effect of the carbon nanotubes.
出处 《催化学报》 SCIE CAS CSCD 北大核心 2008年第10期1027-1031,共5页
基金 东莞市科技专项基金项目(2005d029) 广东省重大科技项目(2007A010700001,2007B090400032) 广州市重点科技项目(2007Z1-D0051,SKT[2007]17-11)
关键词 碳纳米管 碳化钨 交替微波法 乙醇氧化 燃料电池 carbon nanotube tungsten carbide palladium intermittent microwave heating ethanol oxidation fuel cell
  • 相关文献

参考文献29

  • 1Neugebauer J, Bartha L. Int J Refract Met Hard Mater, 1995, 13(1-3): 1.
  • 2Vertes G, Horanyi G, Szakacs S. J Chem Soc, Perkin Trans Ⅱ, 1973, (10): 1400.
  • 3Horanyi G, Vertes G. J Chem Soc, Perkin Trans Ⅱ, 1975, (8): 827.
  • 4Bohn H. Nature. 1970. 227(5257): 483.
  • 5Hwu H H, Chen J G, Kourtakis K, Lavin J G. J Phys Chem B, 2001, 105(41): 10037.
  • 6Levy R B, Boudart M. Science, 1973, 181(4099):547.
  • 7Binder H, Kohling A, Kuhn W, Sandstede G. Angew Chem, Int Ed Engl, 1969, 8(10) : 757.
  • 8Zellner M B, Chen J G. Catal Today, 2005, 99 (3-4) : 299.
  • 9Nikolov I, Niko|ov V, Vitanov T, Swata M. J Powder Sources, 1979, 4(5): 65.
  • 10Meng H, Shen P K. Chem Commun, 2005, (35) : 4408.

二级参考文献44

共引文献13

同被引文献88

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部