期刊文献+

用户行为与遗传算法相结合的用户兴趣获取

Users’ Interests Gaining of Combining Users’ Behaviors and GA
下载PDF
导出
摘要 尽管已经有一些遗传算法被应用于获取用户兴趣,但如何帮助用户找到最符合用户兴趣的信息,仍然存在诸多问题。好的适应度函数对于改善获取用户兴趣的遗传算法是非常重要的。该文设计了一个新的用于获取用户兴趣的遗传算法的适应度函数,使用该函数的遗传算法有效地提高了获取用户兴趣的准确性,减轻了用户的负担。通过实验,验证了该算法的有效性和优越性。 Though there already exist some GAs which have been desiged to gain users' interests , it is still difficult for users to find their special information. Surely, a good fitness function is very important for improving the effect of the genetic algorithm to gain users' interests. A new fitness function is proposed by using this new fitness function. The accurity is improved considerably and the users feel more easy when they use the personalization system. The experiment has proved the superiority and effectiveness of the algorithm proposed by this paper.
出处 《微处理机》 2008年第4期89-91,95,共4页 Microprocessors
基金 高校博士学科点专项科研基金资助课题(20030611016)
关键词 遗传算法 适应度函数 用户兴趣 用户模型 Genetic algorithm Fitness function User interest User profile
  • 相关文献

参考文献9

  • 1Cristina Lopez - Pujalte, Vicente P Guerrero Bote, Felix de Moya - Anegon. A test of genetic algorithms in relevance feedback [ J ]. Information Processing and Management,2002,38 : 793 - 805.
  • 2Jomg-Tzong Homg, Ching - Chang Yeh. Applying genetic algorithms to query optimization in document retrieval [ J ]. Information Processing and Management, 2000,36:737 - 759.
  • 3Cristina Lopez - Pujalte, Vieente P Guerrero - Bote, Felix de Moya- Anegon. Genetic algorithms in relevance feed- back:a second test and new contributions [ J ]. Information Processing and Management,2003,39:669- 687.
  • 4Cristina Lopez - Pujalte, Vicente P Guerrero - Bore. Order -Based Fitness Funtions for Genetic Algorithms Applied to Relevance Feedback [ J ]. Journal of the American Society for Information Science and Technology, 2003,54 (2) :152 - 160.
  • 5G Salton, C Buekley. Improving Retrieval Performance by Relevance Feedback[J]. Journal of the American Society for Information Science, 1990,41 (4) :288 - 297.
  • 6徐斌,刘赛,康立山,郑刚.基于遗传算法的信息检索技术[J].计算机工程,2004,30(9):74-75. 被引量:14
  • 7Carroll J, Rosson M. Interfacing Thought : Cognitive Aspects of Human - Computer Interaction [ M ]. The MIT Press, 1987.
  • 8付关友,朱征宇.个性化服务中基于行为分析的用户兴趣建模[J].计算机工程与科学,2005,27(12):76-78. 被引量:27
  • 9赵银春,付关友,朱征宇.基于Web浏览内容和行为相结合的用户兴趣挖掘[J].计算机工程,2005,31(12):93-94. 被引量:36

二级参考文献23

  • 1鲁松 白硕 等.文本中词语权重计算方法的改进[A]..2000 International Conference on Multilingual Information Processing[C].,2000.31~36.
  • 2Salton G, Buckley C. Term-weighting Approaches in Automatic Text Retrieval. Information Processing and Management. Reprinted in:Sparck Jones K and Willet P.(Eds.) Readings in Information Retrieval..Morgan Kaufmann, San Mateo, CA,1998:323-328
  • 3Cutler M, Deng H, Maniccam S S, et al. A New Study on Using HTML Structures to Improve Retrieval. Proc. 11th IEEE Int. Conf. on Tools with Artificial Intelligence. IEEE Press, Piscataway, NJ, 1999:406-409
  • 4Freitas A A. A Review of Evolutionary Algorithms for E-commerce. In E-Commerce and Intelligent Methods. Studies in Fuzziness and Soit Computing, Springer-Verlag, Heidelberg, Berlin, 2002,(105)
  • 5Morgan J J, Kilgour A C. Personalising on-line lnformation Retrieval Support With a Genetic Algorithm. In: Moscardini A O & Smith P.(Eds.) Proc. of PolyModel 16: applications of artificial intelligence,1996:142-149
  • 6Morgan J J, Kilgour A C. Personalising Information Retrieval Using Evolutionary Modelling, Proceedings of PolyMode116: Applications of Artificial Intelligence. Moscardini A O, Smith P. (Eds.) 1996:142-149
  • 7Edmonds P, Hirst G. Near-synonymy and Lexical Choice. Computational Linguistics ,2002,28(2): 105-144
  • 8Wu Y H, Chen Y C, Chen A L P. Enabling Personalized Recommendation on the Web Based on User Interests and Behaviors[J].In:Proceedings of the 11^th International Workshop on Research lssues in Data Engineering. Los Alamitos,CA:IEEE CS Press,2001:17-24.
  • 9Mladenic D.Text-learning and Related Intelligent Agents:a Surver[J].IEEE Intelligent Systems, 1999,14(4):44-54.
  • 10Pazzani M,Billsus D.Leaming and Revising User Profiles:The Identification of Interesting Web Sites[J]. Machine Learning,1997,27:313-331.

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部