摘要
本文介绍了陕南秦巴山区南水北调中线水源涵养区的现状,以博弈论为基础从效用和成本角度分析了博弈论在流域间跨区污染的应用,挖掘蕴藏于公共物品的私人供给的资源配置理论,并运用支付矩阵得出整体最优化要求提供的公共物品(本文特指秦巴山区提供的生态服务)大于纳什均衡的公共物品供给的结论,即要求秦巴山区在水污染治理方面应付出更多的努力。在此基础上,我们提出使两地区整体福利最大化的政策和建议。
The paper introduces the current situation of the South-to- North water diversion central line project, and makes use of the Game Theory, it analyzes the cross - contamination between valley from the aspect of the cost and utility thory. Then the article dissects the theory of private supply of public goods, adopts the pay- ment matrix and leads to the conclusion that the provision of public goods (this refers to specifically Qinba Mountain water supply) than Nash Balanced supply of public goods, that is, Qinba Mountain Area should provide more water supply under joint decision - making than in the circumstance of independent decision - making Based on above analysis, the article proposes policy recommendations in order to maximize the two area's overall welfare.
出处
《西安财经学院学报》
2008年第6期76-79,共4页
Journal of Xi’an University of Finance & Economics
基金
2007年陕西省教育厅人文社会科学专项科研计划项目(07JK137)
2007年陕西省软科学项目(2007KR29)
关键词
流域间跨区污染
南水北调工程
博弈论
福利最大化
纳什均衡
crass-contamination between HanShui and danjiang
the South-to-North water diversion project
Game Theory
maximization of social welfare
Nash Equilibrium