期刊文献+

一种由FCM算法推导出的隶属函数研究 被引量:2

Study on membership function deduced from FCM algorithm
下载PDF
导出
摘要 分析了Fuzzy C—Means算法中模糊指标m→1^+和m→∞对隶属函数的模糊控制作用,据此提出一种带模糊指标的隶属函数,具有性质:(1)一个数据点对各个模式的隶属度和为1;(2)模糊指标m控制模糊程度。使用Iris数据集对样板法中新旧两种隶属函数做了实验对比。 Analyzed the diversification of membership function of FCM algorithm when fuzzy exponent m→1^+ and m→∞,and proposed a membership function with fuzzy exponent re,which has two features: (1)the sum of memberships for one point to all patterns equals 1 ;(2)m controls the fuzzy degree.A contrastive experiment with Iris illustrated the conclusion in model method.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第32期129-131,共3页 Computer Engineering and Applications
基金 国家高技术研究发展计划(863)(the National High-Tech Research and Development Plan of China under Grant No.2004AA113040)。
关键词 聚类 FCM算法 隶属函数 模糊指标 clustering Fuzzy C-Means(FCM) algorithm membership function fuzzy exponent
  • 相关文献

参考文献9

  • 1Bezdek J C.A physical interpretation of fuzzy ISODATA[J].IEEE Trans, Systems Man, Cybem, 1976, SMC26(2) : 387-390.
  • 2范九伦,吴成茂.FCM算法中隶属度的新解释及其应用[J].电子学报,2004,32(2):350-352. 被引量:35
  • 3Bezdek J C,Hathaway R J,Sabin M J,et al.Convergence theory for fuzzy c-means:Counter-examples and repairs [J].IEEE Transactions on SMC, 1987,17 (5) : 873-877.
  • 4于剑.论模糊C均值算法的模糊指标[J].计算机学报,2003,26(8):968-973. 被引量:97
  • 5陈水利,李敬功,王向公.模糊集理论及应用[M].北京:科学出版社,2005,236-273.
  • 6Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York: Plenum Press, 1981.
  • 7Pal N R,Bezdek J C.On cluster validity for the fuzzy c-mean model[J].IEEE Trans on Fuzzy System, 1995,3(3 ) : 370-379.
  • 8Shihab A I.Fuzzy clustering algorithms and their application to medical image analysis[D].University of London,2000,11.
  • 9高新波,裴继红,谢维信.模糊c-均值聚类算法中加权指数m的研究[J].电子学报,2000,28(4):80-83. 被引量:157

二级参考文献26

  • 1Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York:Plenum Press, 1981.
  • 2Pal N R, Bezdek J C. On cluster validity for the fuzzy c-mean model. IEEE Transactions on Fuzzy Systems, 1995,3 (3): 370-379.
  • 3Fadili M J, Ruan S, Bloyet D, Mayoyer B. On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series. Medical Image Analysis,2001,5(1) :55-67.
  • 4Yu Jian,Cheng Qian-Sheng, Huang Hou-Kuan. On weighting exponent of the fuzzy c-means model. In: Proceedings of ICYCS2001, Hangzhou, 2001, II : 631- 633.
  • 5Bezdek J C, Hathaway R J, Sabin M J, Tucker W. Convergence theory for fuzzy c-means: Counter-examples and repairs.IEEE Transactions on SMC, 1987,17(5): 873-877.
  • 6Choe H,Jordan J B. On the optimal choice of parameters in a fuzzy c-means algorithm. In: Proceedings of IEEE International Conference on Fuzzy Systems, 1992. 349-354.
  • 7Yi Shen, Hong Shi, Jian Qiu-Zhang. Improvement and optimization of a fuzzy c-means clustering algorithm. In: Proceedings of IEEE Instrumentation and Measurement Technology Conference, Budapest, Hungary, 2001.
  • 8Tucker WT. Couterexamples to the convergence theorem for fuzzy ISODATA clustering algorithm. In: Bezdek J C ed. The Analysis of fuzzy Information, Boca Raton, FL: CRC Press,1987, 3:110-117.
  • 9Baraldi A, Blonda P, Parmiggiani F et al. Model transitions in descending FLVQ. IEEE Transactions on Neural Networks,1998,9(5) :724-737.
  • 10Dave R N, Krishnapuram R. Robust clustering methods: A unified view. IEEE Transactions on Fuzzy Systems, 1997,5 (2) :270-293.

共引文献281

同被引文献21

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2张新波.两阶段模糊C-均值聚类算法[J].电路与系统学报,2005,10(2):117-120. 被引量:21
  • 3丁震,胡钟山,杨静宇,唐振民.FCM算法用于灰度图象分割的研究[J].电子学报,1997,25(5):39-43. 被引量:50
  • 4Rose K, Gurewitz E, Fox GC. Constrained clustering as optimization method[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1993,15 (8) : 785--794.
  • 5Krishnapuram R, Keller J. A Possibilistic Approach to Clustering[J]. IEEE Trans. On Fuzzy Systems,1993, 1(2) :98-110.
  • 6BENSAID A, OHALL L, BFZDEK J C. Validityguided(re) clustering with applications to image segmentation[J]. Fuzzy Systems, 1996,4(2) : 112-123.
  • 7Young Wonlin, et al. On the color image segmentation algorithm based on the thresh holding and the fuzzy Cmeans techniques [J]. Pattern Recognition, 1990, 23 (6) :935-952.
  • 8Bezdek J C, Hathaway R J. Progressive sampling schemes for approximate clustering in very large data sets[C]//Proceedings of 2004 IEEE International Conference on Fuzzy Systems, 2004,1:15-21.
  • 9Aggarwal C C,Hun J,Wang J,et al.A framework for clustering evolving data stream[C] //Proc of Int Conf on Very Large Data Bases (VLDB'03),2003:81-92.
  • 10Aggarwal C C,Han J,Wang J,et al.A framework for clustering evolving data stream[C] //Proc of Int Conf on Very Large Data Bases(VLDB'03),2003:81-92.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部