摘要
依据人类AD(Alzheimer's Disease)相关蛋白质相互作用网络图,利用基于算术平均最小值——AAMV(Arithmetic Average Minimum Value)的K-means聚类方法对蛋白质进行聚类并预测4个孤立蛋白质的功能。分析结果表明:所得结果与用Maryland Bridge法及Korbel法所得结果非常相似。
The purpose of this study is to evaluate a novel clustering technique for clustering and detecting the isolated points in protein-protein interaction network,which iteratively refines clusters based on a combination of the K-means clustering algorithm and the Arithmetic Average Minimum Value (AAMV).The result is that the algorithm is found to be effective at detecting clusters and identifying the isolated points in the protein-protefn interaction network graph with regard to human Alzheimer's Disease.The algorithm outperforms competing approaches and is capable of effectively predicting the function-unknown protein function.
出处
《计算机工程与应用》
CSCD
北大核心
2008年第32期132-133,164,共3页
Computer Engineering and Applications
基金
国家自然科学基金(the National Natural Science Foundation of China under Grant No.10571019)。
关键词
蛋白质相互作用网络图
算术平均最小值
K-means聚类方法
准则函数
protein-protein interaction network graph
Arithmetic Average Minimum Value (AAMV)
K-means clustering method
criterion function