期刊文献+

基于局部泛化误差模型的RBFNN的启发式训练方法

A Greedy Algorithm of RBFNN Based on Localized Generalization Error Model
下载PDF
导出
摘要 研究如何应用吴永贤(W.W.Y.NG)提出的局部泛化误差模型来训练径向基函数神经网络(RBFNN),给出了一种训练RBFNN的启发式训练方法.实验表明,该方法成功解决了模型结果计算时间复杂度问题,同时RBFNN的训练精度也达到令人满意的结果. This paper researches how to use the result of the localized generalization error model (LGEM) proposed by Doctor W. W. Y. NG to train RBFNN, and then proposes a greedy algorithm for training RBFNN based on LGEM. Experiment show that the greedy method solutions the problem of computation complexity of LGEM and the training accuracy has obtained good effect.
作者 周静
出处 《保定学院学报》 2008年第4期20-23,共4页 Journal of Baoding University
基金 河北农业大学非生命学科与新兴学科科研发展基金(FSY200739)
关键词 局部泛化误差模型 RBFNN 启发式算法 localized generalization error model RBFNN greedy algorithm
  • 相关文献

参考文献6

  • 1NG W W Y,,YEUNG D S,WANG D F,et al.Localized generalization error and its application to RBFNN training[].Proceedings of IEEE International Conference on Machine Learning and Cybernetics.2005
  • 2YEUNG D S,NG W W Y,WANG D F,et al.Localized generalization error model and its application to architecture selection forradial basis function neural network[].IEEE Transactions on Neural Networks.2007
  • 3WANG X Z,WU B,LI J.An improvement for localized generalization error model[].Proceedings of IEEE InternationalConference on Machine Learning and Cybernetics.2007
  • 4YEUNG D S,NG W W Y.Feature selection using generalization error for supervised classification problems[].Proceedings ofInternational Conference on Instrumentation Control and Information Technology.2005
  • 5CHAN P P K,NG W W Y,YEUNG D S.Active learning using localized generalization error of candidate sample as criterion[].Proceedings of IEEE International Conference on Systems.2005
  • 6WANG X Z,LIU X Y,LI Y,et al.Norm-based localized generalization error model and its derivation for radial basis functionneural networks[].Proceedings of IEEE International Conference on Machine Learning and Cybernetics.2007

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部