摘要
等距曲线逼近的关键在于对其参数速度的逼近,给出了Said-Bézier曲线参数速度的Tchebyshev逼近和Tchebyshev-Padé逼近,在此基础上得到了Said-Bézier曲线的等距曲线的2种有理逼近函数.因为n次Said-Bézier曲线在参数K =[n/2]时,即为n次Bézier曲线,所以文中方法同样适用于Bézier曲线的等距曲线逼近.最后通过2个实例验证了这2种逼近方法,并与Legendre逼近方法进行了比较.
Parametric speed approximation is crucial to the approximation of offset curves. Both the Tchehyshev approximation and the Tchebyshev-Pade approximation of parametric speed of Said-Bezier curves are presented and two rational approximation functions of the offset curves of Said-Bezier curves are also obtained. Since Said-Bezier curve of degree n reduces to Bezier curve of degree n in the case of K=[n/2], the proposed methods are also applicable to Bezier curves. Two examples are given to show the effectiveness of these two methods,and the results are compared with Legendre approximation.
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2008年第11期1494-1499,共6页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(60473114)
安徽省自然科学基金(070416273X)
安徽省教育厅创新团队基金(2005TD03)
教育部博士点基金(20070359014).