摘要
This paper is devoted to the applications of classical topological degrees to nonlinear problems involving various classes of operators acting between ordered Banach spaces. In this framework, the Leray-Schauder, Browder-Petryshyn, and Amann-Weiss degree theories are considered, and several existence results are obtained. The non-Archimedean case is also discussed.
This paper is devoted to the applications of classical topological degrees to nonlinear problems involving various classes of operators acting between ordered Banach spaces. In this framework, the Leray-Schauder, Browder-Petryshyn, and Amann-Weiss degree theories are considered, and several existence results are obtained. The non-Archimedean case is also discussed.