期刊文献+

Finite Groups with Seminormal Sylow Subgroups 被引量:1

Finite Groups with Seminormal Sylow Subgroups
原文传递
导出
摘要 In this paper, we prove the following theorem: Let p be a prime number, P a Sylow psubgroup of a group G and π = π(G) / {p}. If P is seminormal in G, then the following statements hold: 1) G is a p-soluble group and P' ≤ Op(G); 2) lp(G) ≤ 2 and lπ(G) ≤ 2; 3) if a π-Hall subgroup of G is q-supersoluble for some q ∈ π, then G is q-supersoluble. In this paper, we prove the following theorem: Let p be a prime number, P a Sylow psubgroup of a group G and π = π(G) / {p}. If P is seminormal in G, then the following statements hold: 1) G is a p-soluble group and P' ≤ Op(G); 2) lp(G) ≤ 2 and lπ(G) ≤ 2; 3) if a π-Hall subgroup of G is q-supersoluble for some q ∈ π, then G is q-supersoluble.
作者 Wen Bin GUO
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第10期1751-1757,共7页 数学学报(英文版)
基金 an NNSF grant of China (Grant #10771180)
关键词 finite groups seminormal subgroups Sylow subgroups p-soluble groups p-supersoluble groups finite groups, seminormal subgroups, Sylow subgroups, p-soluble groups, p-supersoluble groups
  • 相关文献

参考文献12

  • 1Su, X. Y.: Seminormal subgroups of finite groups. J. Math. (Wuhan), 8(1), 7-9 (1988)
  • 2Kegel, O.: Produkte nilpotenter Gruppen. Arch. Math., 12, 90-93 (1961)
  • 3Guralnick, R. M.: Subgroups of prime power index in a simple group. J. Algebra, 81(2), 304-311 (1983)
  • 4Podgornaya, V. V.: Seminormal subgroups and supersolublitity of finite groups. Vesti NAN Belarus, Ser. Phys.-Math. Science, 4, 22-25 (2000)
  • 5Wang, P. C.: Some fufficient conditions of supersoluble groups. Acta Mathematica Sinica, Chinese Series, 33, 480-485 (1990)
  • 6Wang, P. C.: Some fufficient conditions for a finite group to be solvable. Acta Mathematica Sinica, Chinese Series, 39(6), 820-824 (1996)
  • 7Zhang, Q. H., Wang, L. F.: The influence of s-semipermutable subgroups on the structure of finite groups. Acta Mathematica Sinica, Chinese Series, 48(1), 81-88 (2005)
  • 8Guo, W. B.: The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing-New York- Dordrecht-Boston-London, 2000
  • 9Huppert, B.: Endliche Gruppen I, Berlin-Heidelberg-New York, Springer, 1967
  • 10Lennox, J. C., Stonehewer, S. E.: Subnormal subgroups of groups, Clarendon Press, Oxford, 1987

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部