期刊文献+

过渡金属锇在高压下的力学特性

Mechanical Properties of Transition-Metal Osmium under High Pressure
下载PDF
导出
摘要 基于密度泛函理论平面波赝势法的第一性原理计算,研究了过渡金属锇在高压下的状态方程、弹性常数和其它力学性质。计算结果表明:过渡金属锇具有很高的体积模量B0(423.9 GPa)和弹性常数C11(771.3 GPa)与C33(852.0 GPa),与金刚石的(B0=452.8 GPa,C11=C33=1 082.9 GPa)比较,具有超低压缩特性;表征材料抵抗剪切变形能力的弹性常数C44(269.8 GPa)和切变模量(276.8 GPa)只有金刚石的(C44=586.9 GPa,G=537.5 GPa)一半,而所成的又是纯金属键,因此锇不具有超硬性。最后,定性分析了它的高体积模量和低硬度的微观电子机制,这对于设计与合成新的超硬性材料具有启发意义。 The equation of states, elastic constants and other mechanical properties of transition-metal osmium under high-pressure are studied by the first-principles plane-wave pseudopotential calculations based on the density functional theory (DFT). The calculated results indicate that osmium has high bulk modulus B0 (423.9 GPa) and large elastic constants C1l (771.3 GPa)and C33 (852.0 GPa)compara- ble to diamond (B0 = 452.8 GPa, C11 = C33 = 1 082. 9 GPa), so it is an ultralow-compressible material. However,its elastic constant C44 (269.8 GPa) and shear modulus G(276.8 GPa), which indirectly measure hardness,are half of those of diamond (C44 =586.9 GPa,G=537.5 GPa). Because of its pure metallic bonds,it may not be superhard material. The microscopic mechanism of high bulk modulus and low hardness can be understood from the analysis for electronic structures,and it helps to design and synthesize new superhard material.
出处 《高压物理学报》 EI CAS CSCD 北大核心 2008年第3期253-258,共6页 Chinese Journal of High Pressure Physics
基金 国家自然科学基金项目(10602023) 上海市教委科研创新项目(08YZ119) 上海市高校选拔培养优秀青年教师科研专项基金项目(2005xpyq32) 上海水产大学博士启动基金
关键词 过渡金属锇 力学特性 高压 第一性原理计算 transition-metal osmium mechanical properties high-pressure first-principles calculations
  • 相关文献

参考文献28

  • 1Cynn H,Klepeis J E, Yoo C S, et al. Osmium Has the Lowest Experimentally Determined Compressibility [J]. Phys Rev Lett, 2002,88 : 135701.
  • 2Occelli F,Farber D L,Badro J,et at. Experimental Evidence for a High-Pressure Isostructural Phase Transition in Osmium [J]. Phys Rev Lett, 2004,93 : 095502.
  • 3Keniehi T. Bulk Modulus of Osmium:High-Pressure Powder X-Ray Diffraction Experiments under Quasihydrostatic Conditions [J]. Phys Rev B,2004,70:012101.
  • 4Liang Y C, Fang Z. First-Principles Study of Osmium under High-Pressure [J]. J Phys:Condens Matter, 2006,18: 8749-8759.
  • 5Joshi K D,Jyoti G, Gupta S C. On Compressibility of Osmium Metal [J]. High Pressure Res, 2003,23 (4) :403-408.
  • 6Fast L,Wills J M,Johansson B,et al. Elastic Constants of Hexagonal Transition Metals:Theory [J]. Phys Rev B, 1995,51 : 17431.
  • 7Hebbache M,Zemzemi M. Ab Initio Study of High-Pressure Behavior of a Low Compressibility Metal and a Hard Material: Osmium and Diamond [J]. Phys Rev B,2004,70:224107.
  • 8Ma Y M,Cui T, Zhang L J,et al. Electronic and Crystal Structures of Osmium under High Pressure [J]. Phys Rev B, 2005,72 : 174103.
  • 9Sahu B R,Kleinman L. Osmium Is Not Harder than Diamond [J]. Phys Rev B,2005,72:113106.
  • 10Koudela D,Richter M,Mobius A,et al. Lifshitz Transitions and Elastic Properties of Osmium under Pressure [J]. Phys Rev B,2006,74 : 214103.

二级参考文献37

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部