期刊文献+

二维气/液界面不稳定性数值模拟(英文) 被引量:4

Two-Dimensional Numerical Simulation of Gas/Liquid Interface Instability
下载PDF
导出
摘要 以多介质的体积分数方法和三阶PPM(Piecewise Parabolic Method)方法为基础,给出了适用于多介质流体动力学数值模拟的计算方法和程序MFPPM。利用MFPPM程序对在高压气体冲击作用下的气体/液体交界面的Richt myer-Meshkov(RM)不稳定性及其引起的流体混合现象进行了数值模拟研究。主要研究在不同的初始扰动情况下流体混合区的发展,并细致研究了流体混合区的宽度、气泡和尖钉高度随时间的增长情况及不同初始扰动对它们的影响;同时还研究了网格尺度不同时混合区、气泡以及尖钉的构型和高度的增长情况。通过对计算结果的分析得出,流体混合区、气泡以及尖钉的发展与初始扰动有密切的关系,特别是在后期影响更为显著;混合区宽度的变化过程和尖钉相似,而气泡高度的变化基本上呈线性增长趋势,且受初始扰动的影响比较小,但是其构型却有明显差别;网格的影响也主要体现在对混合区、气泡和尖钉的构型上。 On the basis of multi-fluid volume fraetion(VOF) and piecewise parabolic method(PPM), a multi-fluid hydrodynamic program MFPPM(Multi-Fluid Piecewise Parabolic Method) was developed and per- formed to study the Richtmyer-Meshkov instability of gas/liquid interface. The influences of initial perturbations and grids on the fluid mixing zone(FMZ) were mainly researched when it is accelerated by shock waves, and the FMZ width,bubble and spike height growing with time were presented simultaneously. By comparing the computational results,it shows that the initial perturbations affect the FMZ growth rate extremely,especially at late times. The evolution of spike is similar to the FMZ,the bubble height increases linearly with time basically,and influenced little by initial perturbations,but the configuration is quite different,and as the effect of grid size is.
出处 《高压物理学报》 CAS CSCD 北大核心 2008年第3期298-304,共7页 Chinese Journal of High Pressure Physics
基金 Foundation of China Academy of Engineering Physics(2008B0202011)
关键词 多介质流体动力学 RICHTMYER-MESHKOV不稳定性 流体混合区 multi-fluid hydrodynamic Riehtmyer-Meshkov instability fluid mixing zone
  • 相关文献

参考文献2

二级参考文献21

  • 1Joseph D D, Belanger J, Beavers G S. Breakup of a liquid drop suddenly exposed to a high-speed airstream [J]. Int J Multiphase Flow, 1999,25 : 1263--1303.
  • 2WANG Xiao-liang, SHI Hong-hui, Itoh M, et al. Flow visualization of high-speed pulsed liquid jet [A]. Proc SPIE [C]. 2000, 899--906.
  • 3SHI Hong-hui, WANG Xiao-liang, Itoh M, et al. Acceleration of water column and generation of large flow rate water spray by shock tube [J]. JSME Int J Ser B, 2001,44(4) ,543--551.
  • 4WANG Xiao-liang , Itoh M, SHI Hong-hui, et al. Experimental study of Rayleigh-Taylor instability in a shock tube[J]. Jpn J Appl Phys, 2001,40(11):6668--6674.
  • 5SHI Hong-hui, WANG Xiao-liang. Hydrodynamic shock tube for quick transportation of spray with large flow rate[J]. Experiments in Fluids, 2002,32(2), 280-- 282.
  • 6Richtmyer R D. Taylor instability in shock acceleration of compressible fluids [J]. Commun Pure Appl Math,1960,13:297--319.
  • 7Meshkov E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969,4:101--104.
  • 8Prestridge K, Rightley R M, Vorobieff P, et al. Simultaneously density-field visualization and PIV of a shock-accelerated gas curtain [J]. Experiments in Fluids, 2000,29:339--346.
  • 9Praaad J K, Rasheed A, Kurmar S, et al. The late-time development of the Richtmyer-Meshkov instability[J].Phys of Fluids, 2000,12(8):2108--2115.
  • 10Lewis D J. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes--Ⅱ [J].Proc Roy Soc London Ser A, 1950,202:81--96.

共引文献24

同被引文献16

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部