期刊文献+

一类带势的非线性Schrdinger方程对称爆破解的L^2集中性质 被引量:3

L^2-concentration of Symmetric Blow-up Solutions for Nonlinear Schrdinger Equations with Potential
下载PDF
导出
摘要 研究一类带势的非线性Schrdinger方程iut=-△u-k(t,x)|u|4/Nu,在二维空间中得到了其解在有限时间爆破的充分条件和其对称爆破解的L2集中性质. In this paper, a class of nonlinear Schrodinger equations with potential, iu,=-△u-k(t,x)|u|^4/Nu, is investigated in two-dimensional space. A sufficient condition for the solutions to blow-up in finite time is given, and L^2-concentration of blow-up solutions is proved.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期645-648,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10771151)资助项目
关键词 非线性SCHRODINGER方程 基态解 爆破解 爆破点 L^2集中 Nonlinear Schrodinger equation Ground state solution Blow-up solution Blow-up point L^2 -concentration
  • 相关文献

参考文献18

  • 1Carles R. Remark on nonlinear Schrodinger equations with harmonic potential[J]. Ann Henri Poincare,2002,3:757-772.
  • 2Ginibre J, Velo G. On a class of nonlinear Sehrodinger equations I : the Cauchy problem, general case[ J ]. J Func Anal, 1979,32 : 1-71.
  • 3Weinstein M I. Nonlinear Sehrodinger equations and sharp interpolation estimates[ J]. Commun Math Phys, 1983,87:567-576.
  • 4Kwong M K. Uniqueness of positive solutions of △u - u + u^p =O in R^∧[ J]. Arch Rational Mech Anal,1989,105:243-266.
  • 5L ^2-concentratxon of blow-up solutions for the nonlinear Schrodinger equation with critical power nonlinearity Merle F, Tsutsumi Y. 2 [J]. J Diff Eqs, 1990,84:205-214.
  • 6Merle F. Nonexistence of minimal blow-up solutions of equations iu, = - △u -k(x) |u|^4/n u in R^N[ J ]. Ann Inst Henry Poineare Phys Theorique, 1996,64:33-85.
  • 7Zhang Jian. Sharp conditions of global existence for nonlinear Schrtidinger and Klein-Gordon equations [ J ]. Nonlinear Anal TMA, 2002,48 : 191-207.
  • 8Zhang Jian. Stability of standing waves for nonlinear Schrodinger equations with unbounded potentials [ J ]. Z Angew Math Phys, 2000,51:498-505.
  • 9舒级,张健.一类带调和势的非线性Schrdinger方程[J].四川师范大学学报(自然科学版),2002,25(2):129-131. 被引量:18
  • 10张健,舒级.低维空间中带调和势的非线性Schrdinger方程[J].四川师范大学学报(自然科学版),2002,25(3):226-228. 被引量:13

二级参考文献44

  • 1Carles, R., Remark on nonlinear Schroedinger equations with harmonic potential [J],Ann. Henri Poincard, 3(2002), 757- 772.
  • 2Tsurumi, T., & Wadati, M., Collapses of wave functions in multi-dimensional nonlinear Schroedinger equations under harmonic potential [J], J. Phys. Soc. Jpn., 66(1997), 1 8.
  • 3Weinstein, M. I., Nonlinear Schroedinger equations and sharp interpolation estimates[J], Comm. Math. Phys [J], 87(1983), 567- 576.
  • 4Kwong, M. K., Uniqueness of positive solutions of △u - u + u^p = 0 in RN [J], Arch.Rational. Mech. Anal., 105(1989), 243-266.
  • 5Merle, F. & Tsutsumi, Y., L^2-concentration of blow-up solutions for the nonlinear Schroedinger equation with critical power nonlinearity [J], J. Diff. Eqs., 84(1990), 205-214.
  • 6Oh, Y. G., Cauchy problem and Ehrenfest's law of nonlinear Schroedinger equations with potentials [J], J. Diff. Eqs., 81(1989), 255- 274.
  • 7Cazenave, T., An Introduction to Nonlinear Schroedinger Equations [M], Textos de metodos mathmatics, 22 Rio de Janeiro, 1989.
  • 8Zhang, J., Stability of attractive Bose-Einstein condensate [J], J. Statist. Phys 101(2000), 731 -746.
  • 9Strauss, W. A., Existence of solitary waves in higher dimensions [J], Comm. Math.Phys., 55(1977), 149-162.
  • 10Kavian, T., A remark on the blowing-up of solutions to the Cauchy problem for nonlinear SchrSdinger equations [J], Trans. Am. Math. Soc., 299(1987), 193-203.

共引文献39

同被引文献28

  • 1郑斌.2+1维非线性Schrdinger方程的显式解[J].重庆师范大学学报(自然科学版),2006,23(2):23-25. 被引量:7
  • 2周国中.叠加势V(r)=B_6■+B_5■+B_4■+B_3■+B_2■+B_1 r schrdinger方程的解析解[J].贵州师范大学学报(自然科学版),2006,24(4):71-73. 被引量:3
  • 3Saito H,Ueda M.Intermittent implosion and pattern formation of trapped Bose-Einstein condensates with an attractive interaction[J].Phys Rev Lett,2001,86(4):1406-1409.
  • 4Oh Y G.Cauchy problem and Ehrenfest's law of nonlinear Schrodinger equations with potentials[J].J Differential Equations,1989,81(3):255-274.
  • 5Tsutsumi M.Nonexistence of global solutions to the Cauchy problem for the damped nonlinear Schrdinger equations[J].SIAM J Math Anal,1984,15(3):357-366.
  • 6Fibich G.Self-focusing in the damped nonlinear Schrodinger equation[J].SIAM J Appl Math,2001,61(5):1680-1705.
  • 7Ohta M,Todorova G.Remarks on global existence and blowup for damped nonlinear Schrdinger equations[J].Discrete and Continuous Dynamical Systems,2009,23(6):1313-1325.
  • 8Zhang J.Stability of standing waves for nonlinear Schrodinger equations with unbounded potentials[J].Z Angew Math Phys,2000,51(5):498-503.
  • 9Bégout P.Necessary conditions and sufficient conditions for global existence in the nonlinear Schrdinger equation[J].Adv Math Sci Appl,2002,12(2):817-827.
  • 10Kono M, Skoric M, Ter Haar D. Spontaneous excitation of magnetic fields and collapse dynamics in a Langmuir plasma [ J ]. J Plasma Phvs, 1981:26 : 123 - 146.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部