摘要
本文将一维重复单胞体系本征方程的因子分解方法向二维体系作了一般的推广,从而解决了一些由重复单胞构成的二维大分子体系的能谱问题。利用因子分解法,我们研究了石墨类二维平面分子边缘的化学反应活性以及体系的电子结构、导电性与分子尺度的关系。结果表明,对于石墨类分子,边界效应是非常显著的,且体系的反应活性、导电机制与边界的结构紧密相关。
In this paper, the factorizing method for HMO eigenequation of 1-D polymers has been extended to 2-D systems in a general way, thus the eigenvalue problems of some 2-D polymers have been solved. Based on it, and combining with 1-D factorizing method, we have investigated the reactivities on the edges of some graphite-like systems, and the dependence of electronic structure and conductivity upon their size. The results provide some useful information for design of 2-D conducting polymers.
出处
《化学学报》
SCIE
CAS
CSCD
北大核心
1990年第11期1057-1063,共7页
Acta Chimica Sinica