期刊文献+

Effects and mechanism of glucagon-like peptide-1 on injury of rats cardiomyocytes induced by hypoxia-reoxygenation 被引量:24

Effects and mechanism of glucagon-like peptide-1 on injury of rats cardiomyocytes induced by hypoxia-reoxygenation
原文传递
导出
摘要 Background Although the insulinotropic role of glucagon-like peptide-1 (GLP-1) in type 2 diabetes mellitus has been substantiated, its role in cardioprotection remains largely unknown. This study aimed to determine the effects of GLP-1 on injury of rats cardiac myocytes induced by hypoxia-reoxygenation (H/R) and the possible mechanisms. Methods The cultured neonatal rats cardiac myocytes were randomly divided into seven groups: the normal control group, the H/R group, the GLP-1+H/R group, the GLP-1+H/R+UO126 (the p42/44 mitogen-activated protein kinase (MAPK) inhibitor) group, the GLP-1+H/R+LY294002 (phosphatidylinositol 3-kinase (PI3K) inhibitor) group, the H/R+UO126 group, and the H/R+LY294002 group. The lactate dehydrogenase (LDH) activity, apoptosis rate of cardiac myocytes, and caspase-3 activity were detected after the injury of H/R. Results Compared with the normal control group, the activity of LDH, cardiac myocyte apoptosis rate, and caspase-3 activity all increased significantly in the H/R group (P 〈0.01). Compared with the H/R group, these three indices all decreased in the H/R+GLP-1 group (P 〈0.01). However, the changes of LDH activity, apoptosis rate, and caspase-3 activity were inhibited by LY294002 and UO126 respectively. Conclusions GLP-1 can directly act on cardiac myocytes and protect them from H/R injury mainly by inhibiting their apoptosis. Its mechanism may be through the PI3K-Akt pathway and the MAPK signaling pathway. Background Although the insulinotropic role of glucagon-like peptide-1 (GLP-1) in type 2 diabetes mellitus has been substantiated, its role in cardioprotection remains largely unknown. This study aimed to determine the effects of GLP-1 on injury of rats cardiac myocytes induced by hypoxia-reoxygenation (H/R) and the possible mechanisms. Methods The cultured neonatal rats cardiac myocytes were randomly divided into seven groups: the normal control group, the H/R group, the GLP-1+H/R group, the GLP-1+H/R+UO126 (the p42/44 mitogen-activated protein kinase (MAPK) inhibitor) group, the GLP-1+H/R+LY294002 (phosphatidylinositol 3-kinase (PI3K) inhibitor) group, the H/R+UO126 group, and the H/R+LY294002 group. The lactate dehydrogenase (LDH) activity, apoptosis rate of cardiac myocytes, and caspase-3 activity were detected after the injury of H/R. Results Compared with the normal control group, the activity of LDH, cardiac myocyte apoptosis rate, and caspase-3 activity all increased significantly in the H/R group (P 〈0.01). Compared with the H/R group, these three indices all decreased in the H/R+GLP-1 group (P 〈0.01). However, the changes of LDH activity, apoptosis rate, and caspase-3 activity were inhibited by LY294002 and UO126 respectively. Conclusions GLP-1 can directly act on cardiac myocytes and protect them from H/R injury mainly by inhibiting their apoptosis. Its mechanism may be through the PI3K-Akt pathway and the MAPK signaling pathway.
出处 《Chinese Medical Journal》 SCIE CAS CSCD 2008年第21期2134-2138,共5页 中华医学杂志(英文版)
关键词 glucagon-like peptide-1 HYPOXIA-REOXYGENATION APOPTOSIS CASPASE-3 MAP kinase PI3K/AKT glucagon-like peptide-1 hypoxia-reoxygenation apoptosis caspase-3 MAP kinase PI3K/Akt
  • 相关文献

同被引文献56

引证文献24

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部