期刊文献+

一种应用幅值信息的一单元定点复数ICA-R算法 被引量:3

One-Unit Fixed-Point Complex-valued ICA-R Algorithm Using Magnitude Information
下载PDF
导出
摘要 参考独立分量分析(Independent Component Analysis with Reference,ICA-R)通过引入参考信号而实现期望实值源信号的抽取。然而,目前尚无复数域ICA-R算法。该文在约束ICA框架下,利用期望源信号的幅值信息提出了一种定点复数ICA-R算法,用于抽取某个期望的复数源信号。首先,采用复数fastICA算法的差异函数和关于复数信号幅值信息的不等式约束建立了复数ICA-R模型,然后采用增广朗格朗日函数和K-T条件推导了复数ICA-R定点算法。计算机仿真和性能分析结果表明,由于利用了幅值信息,复数ICA-R的估计性能优于传统的复数fastICA算法。 Independent Component Analysis with Reference (ICA-R) extracts only desired signals by incorporating prior information as reference signals. It can provide output signals with definite order and improved performance. However, no ICA-R algorithm in complex domain has been reported till now. Motivated by the fact that the magnitude information of a complex-valued signal is readily obtained, this paper proposes a fixed-point complex-valued ICA-R algorithm to extract a desired signal by utilizing its magnitude information in the framework of constrained ICA. Specifically, the complex ICA-R is formulated as maximizing the contrast function of a blind complex fastICA algorithm under an inequality constraint corresponding to the magnitude information, the augmented Lagrangian function and Kuhn-Tucker conditions are then used to derive the fixed-point algorithm. The results of computer simulations and performance analysis demonstrate that the complex-valued ICA-R algorithm outperforms the blind complex fastICA algorithm by virtue of incorporation of magnitude information.
作者 李镜 林秋华
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第11期2666-2669,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60402013)资助课题
关键词 参考独立分量分析 独立分量分析 半盲分离 复数信号 参考信号 Independent component analysis with reference Independent component analysis Semi-blind source separation Complex-valued signal Reference signal
  • 相关文献

参考文献14

  • 1Comon P. Independent component analysis, a new concept? Signal Processing, 1994, 36(3): 287-314.
  • 2Hyvarinen A, Karhunen J, and Oja E. Independent component analysis. New York: John Wiley, 2001, chapter1, chapter8.
  • 3Cichocki A and Amari S. Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Chichester: John Wiley, 2003, chapter1, chapter6.
  • 4Lin Q H, Zheng Y R, Yin F L, Liang H L, and Calhoun V D. A fast algorithm for one-unit ICA-R. Information Sciences, 2007, 177(5): 1265-1275.
  • 5Lu Wei and Rajapakse J C. ICA with Reference. Proc. Third Int. Conf. on Independent Component Analysis and Blind Source Separation (ICA2001), San Diego, California, 2001: 120-125.
  • 6Lu Wei and Rajapakse J C. Approach and applications of constrained ICA. IEEE Trans. on Neural Networks, 2005, 16 (1): 203-212.
  • 7Amari S, Douglas S C, Cichocki A, and Yang H H. Multichannel blind deconvolution and equalization using the natural gradient. First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications. Paris, France, 1997: 101-104.
  • 8Calhoun V D, Adali T, Pearlson G D, VanZijl P C M, and Pekar J J. Independent component analysis of fMRI data in the complex domain. Magnetic Resonance in Medicine, 2002, 48(1): 180-192.
  • 9Bingham E and Hyvarinen A. A fast fixed-point algorithm for independent component analysis of complex-valued signals. International Journal of Neural Systems, 2000, 10(1): 1-8.
  • 10Eriksson J and Koivunen V. Complex random vectors and ICA models: identifiability, uniqueness, and separability. IEEE Trans. on Information Theory, 2006, 52(3): 1017-1029.

同被引文献21

  • 1陈铿,韩伯棠.混沌时间序列分析中的相空间重构技术综述[J].计算机科学,2005,32(4):67-70. 被引量:86
  • 2林秋华,郑永瑞,殷福亮.基于参考独立分量分析的语音增强方法[J].大连理工大学学报,2006,46(6):915-919. 被引量:7
  • 3P. Comon. Independent component analysis: a new concept [J]. Signal Processing, 1994,36 (3) : 287-314.
  • 4W. Lu, J. C. Rajapakse. ICA with reference[J]. Neurocom- puting, 2006,69 (16-18) : 2244-225.
  • 5Qiu-Hua Lin, Yong-Rui Zheng, Fu-Liang Yin, et al. A fast al- gorithm for one-unit ICA-R[J]. Information Sciences, 2007, 177(5) :1265-1275.
  • 6De-Shuang Huang, Jian-Xun Mi. A new constrained independ- ent component analysis method [J]. IEEE Transactions on Neural Networks, 2007,18(5) : 1532-1535.
  • 7LI Chang-li, LIAO Gui-sheng. A referencebased blind source extraction algorithm[J]. Neural Computing and Applications, 2010,19(2) :299-303.
  • 8Bingham E, Hyv rinen A. A fast fixedpoint algorithm for in- dependent component analysis of complex-valued signals[J]. International Journal of Neural Systems, 2000,10(1) : 1-8.
  • 9林秋华,李镜.基于ICA-R的复值信号抽取方法[J].大连理工大学学报,2008,48(6):919-925. 被引量:2
  • 10李昌利,廖桂生,李用江.改进的参考独立分量分析算法[J].华中科技大学学报(自然科学版),2009,37(4):55-57. 被引量:5

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部