期刊文献+

非规则LDPC度分布优化设计 被引量:4

Design and Optimization of Degree Distributions of Irregular LDPC
下载PDF
导出
摘要 一对好的度分布可以有效降低LDPC的错误平层和编译码复杂度,在AWGN信道下,通过高斯近似分析方法可近似计算给定度分布的LDPC译码门限,利用差分进化算法可优化度分布以获得具有最大门限的度分布,仿真结果表明获得的度分布的译码门限比线性算法优化结果要好0.15dB左右。 Good degree distributions can improve the error-floor and reduce the complication in encoding and decoding of LDPC. Under AWGN channel, Gaussian approximation algorithm can analyze the decoding threshold of LDPC presented by their degree distributions. Using differential evolution, the degree distributions that possess maximal threshold can be gotten. Through simulation results, the optimized degree distributions which possess a 0.15dB better noisy threshold than using linear algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第11期2788-2791,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金项目(60572176)资助课题
关键词 LDPC 差分进化 高斯近似 门限值 度分布 LDPC Differential evolution Gaussian approximation Threshold Degree distribution
  • 相关文献

参考文献7

  • 1Gallager R G. Low-Density Parity-Check Codes [D]. [Ph. D. dissertation], Cambridge, MA- MIT Press, 1963.
  • 2Luby M. Analysis of low density codes and improved designs using irregular graphs[C]. In proc .3oth. Annu. ACM symp. Theory of Computing, 1998: 249-258.
  • 3Richardson T, Shokrollahi A, and Urabanke R, Design of capacity-approaching irregular low-density parity-check codes [J]. IEEE Trans. on Inform. Theory, 2001, 47(2): 619-637.
  • 4Chung S Y, Richardson T J, and Urbanke R L. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation[J]. IEEE Trans. on Inform. Theory, 2001(47), (2): 657-670.
  • 5Di Changyan, Richardson T, and Urabanke R. Weight distribution of Low Density Parity Check Codes[J]. IEEE Trans. on Inform. Theory, 2006, 52(11): 4839-4855.
  • 6Price K and Storm R. Differential evolution A simple and efficient adapive scheme for global optimization over continuous spaces[J]. J. Global Optimiz, 1997, 11: 341-359.
  • 7肖娟,王琳,邓礼钊.不规则LDPC码的密度进化方法及其门限值确定[J].电子与信息学报,2005,27(4):617-620. 被引量:6

二级参考文献4

  • 1Chung S Y, Fomey J G D, Richardson T, Urbanke R. On the design of low-density parity-cheek codes within 0.0045 dB of the Shannon limit. IEEE Commun. Lett., 2001, 5(2): 58 - 60.
  • 2Richardson T, Urbanke R. The capacity of low-density paritycheck codes under message-passing decoding. IEEE Trans. on Info. Theory, 2000, 47(2): 599- 618.
  • 3Richardson T, Shokrollahi A, Urbanke R. Design of capacityapproaching low-density parity-check codes. IEEE Trans. on Info.Theory, 2001, 47(2): 619 - 637.
  • 4Chung S Y, Urbanke R, Richardson T, Gaussian approaximation for sum-product decoding of low-density parity-check codes. In Proc. Int. Symp. Info. Theory, Sorrento, Italy, Jun, 2000:318.

共引文献5

同被引文献26

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2肖娟,王琳,邓礼钊.不规则LDPC码的密度进化方法及其门限值确定[J].电子与信息学报,2005,27(4):617-620. 被引量:6
  • 3寇晓丽,刘三阳.一种随机微粒群混合算法求解约束优化问题[J].系统仿真学报,2007,19(10):2148-2150. 被引量:5
  • 4Di Changyan,Richardson T,Urabanke R.Weight distribution of low density parity check codes[J].IEEE Trans.on Informa-tion Theory,2006,52(11):4839-4855.
  • 5Saeedi H,Banihashemi A.Design of irregular LDPC codes for BIAWGN channels with SNR mismatch[J].IEEE Trans.on Information Theory,2009,57(1):6-11.
  • 6Parsopoulos K E,Vrahatis M N.On the computation of all global minimizers through particle swarm optimization[J].IEEE Trans.on Evolutionary Computation,2004,8(6):211-224.
  • 7Richardson T J,Shokrollahi M A,Urbanke R.Design of capacity-approaching irregular low density parity check codes[J].IEEE Trans.on Information Theory,2001,47(2):619-637.
  • 8Gallager R G. Low-density Parity-check Codes[D]. Cambridge, USA: MIT Press, 1963.
  • 9Mackey R M. Near Shannon Limit Performance of Low Density Parity Check Codes[J]. Electronics Letters, 1996, 33(6): 1645- 1646.
  • 10Di Changyan, Richardson T, Urabanke R. Weight Distribution of Low Density Parity Check Codes[J]. IEEE Trans. on Information Theory, 2006, 52(11): 4839-4855.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部