期刊文献+

基于粒子群优化的数据分类算法 被引量:8

Particle Swarm Optimization for Data Classification
下载PDF
导出
摘要 设计了一种基于粒子群优化的数据分类算法。新算法首先对数据样本预处理,利用粒子群优化算法通过训练数据进行分类规则的提取,根据提取得到的规则对数据进行分类识别。基于Bayes定理和随机状态转移过程对新算法的收敛性进行分析。通过对UCI数据集分类实验及遥感图像目标识别实验,验证了新算法是一种有效的分类方法。 A novel data classification method, Particle Swarm Optimization for classification (PSOC), was put forward. After pretreating the data, the classification rules were discovered by particle swarm optimization algorithm based on the training samples, and then the data was classified by the discovered rules. The convergence of the new algorithm was analyzed based on Bayes’s theorem and stochastic transform process. Experimental study on UCI machine learning repository and the remote sensing image data shows the proposed algorithm obtains good performances.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第22期6158-6162,6168,共6页 Journal of System Simulation
关键词 分类 粒子群优化 数据挖掘 进化算法 classification,particle swarm optimization,data mining,evolutionary algorithm
  • 相关文献

参考文献14

  • 1De Jong K A, Spears W, Cordon D F. Using Genetic Algorithms for Concept Learning [J]. Machine Learning (S0885-6125), 1993, 13(2/3): 155-188.
  • 2Janikow C Z. A knowledge-intensive Genetic Algorithm for Supervised Learning [J]. Machine Learning (S0885-6125), 1993, 13(2/3): 189-288.
  • 3Holland J H. Escaping Brittleness: The Possibilities of Genetic Purpose Learning Algorithms Applied to Parallel Rule-based Systems [J]. Machine Learning (S0885-6125), 1986, 10(4): 593-623.
  • 4Wilson S. Classifier Systems and the Animate Problem [J]. Machine Learning (S0885-6125), 1987, 2(3): 199-228.
  • 5Kennedy J, Eberhart R C. Particle Swarm Optimization [C]// Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, Perth, NJ, USA: 1EEE service center, 1995: 1942-1948.
  • 6Shi Y, Eberhart R C. A Aodified Particle Swarm Optimizer [C]// Proceedings of the IEEE International Conference on Evolutionary Computation. Piscataway, N J, Anchorage, AK, USA: IEEE service center, 1998: 69-73.
  • 7Swinburne R. Bayes's Theorem [M]. Oxford, UK: Oxford University Press, 2002.
  • 8UCI repository of machine learning databases [DB/OL]. http://www.ic s.uci.edu/-mlearn/MLRepository.html.
  • 9Juliet Juan Liu, James Tin-Yau Kwok. An Extended Genetic Rule Induction Algorithm [C]// Proceeding of IEEE Congress on Evolutionary Computation, San Diego, USA. USA: IEEE, 2000: 458 -463.
  • 10Domingos P. Unifying Instance-based and Rule-based Induction [J]. Machine Learning (S0885-6125), 1996, 24(2): 141-168.

二级参考文献18

  • 1[1]Hu M K. Visual Pattern Recognition by Moment Invariants, IRE Trans. Inform. Theory, 1962, IT-8:179-187
  • 2[2]Niblack W, Barber R, Equitz W, Flickner M, Glasman D,Petkovic D, and Yanker P. The qbic Project: Querying Image by Content Using Color, Texture, and Shape, SPIE,1993, 1908: 173-187.
  • 3[3]Chapelle O, Haffner P, and Vapnik V N. Support Vector Machines for Histogram-based Image Classification,IEEE Trans. On Neural networks, 1999, 10(5):1055-1064.
  • 4[4]Vapnik V N. The Nature of Statistical Learning Theory,Springer-VerLag, NY, 1995.
  • 5[5]Cortes C, and Vapnik V. Support Vector Networks,Machine Learning, 1995, 20:273-297.
  • 6[6]Scholkopf B, Sung K, Burges C, Girosi F, Niyogi P, Pogio T, and Vapnik V. Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers. A.I.Memo1559, MIT, December 1996.
  • 7[7]Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998, 2(2): 955-974.
  • 8[1]Niblack W,Barber R,Equitz W,et al.The Qbic Project:Querying Image by Content Using Color,Texture,and Shape[R].SPIE,1993,1908:173-187.
  • 9[2]Chapelle O,Haffner P,Vapnik V N.Support Vector Machines for Histogram-based Image Classification[J].IEEE Trans.on Neural Networks,1999,10(5):1055-1064.
  • 10[3]Kohonen T.Self-Organizing Maps[M].NY:Springer-Verlag,1995.

共引文献17

同被引文献79

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部