期刊文献+

网络话题活性模型的仿真与分析 被引量:2

Simulation and Analysis of Internet Topic Active Model
下载PDF
导出
摘要 热点话题发现是互联网舆论研究中的基础性问题之一,为此提出了话题活性模型和快速筛选算法。话题活性模型能够在话题形成讨论热点的早期将其从混合的帖子到达流中分离出来;快速筛选算法仅根据即时信息进行计算,不需要长期历史信息,且计算的时间复杂度仅为O(n),较好的解决了热点话题快速筛选问题。最后仿真和实证,证明了该方法的有效性。 Finding hot topic is a basic issue of internet public opinions research, in order to resolve this problem, topic active model and fast filter hot topics on BBS (electronic bulletin board system) arithmetic were advanced. Topic active model can find out hot topics from mixed bulletins during their discussion forepart, and fast filter just needs current information not history data and can calculate during O ( n ) time. The result of simulation shows that this topic activity model is effective.
作者 李永昊 刘云
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第22期6282-6284,6289,共4页 Journal of System Simulation
基金 高等学校重大项目培育基金(707006) 北京市教委重大共建项目资助
关键词 舆论 BBS 热点话题 快速发现 opinion,BBS,hot topics,fast filter
  • 相关文献

参考文献6

  • 1Google. About Google Trends. [2008]. http://www.google.com/intl/en/ trends/about.html.
  • 2Pena-Shaff J B, C Nicholls. Analyzing student interactions and meaning construction in computer bulletin board discussions [J]. Computers & Education (S0360-1315), 2004, 42(3): 243-265.
  • 3Matsumura N, et al. The Dynamism of 2channel. [J]. Journal of AI & Society, Springer Verlag (S0951-5666), 2005, 19(1): 84-92.
  • 4Naruse K, M Kubo. Lognormal Distribution of BBS Articles and its Social and Generative Mechanism. [C]//Web Intelligence, 2006. WI 2006. IEE-E/WIC/ACM International Conference on 2006, Hong Kong, China. USA: IEEE, 2006.
  • 5Nonnecke B, J Preece. Lurker demographics: counting the silent, in Conference on Human Factors in Computing Systems [C]// Proceedings of the SIGCHI conference on Human factors in computing systems 2000. The Hague, The Netherlands: ACM Press, 2000.
  • 6Kou Z-b, T Ban, C-s Zhang. Dissimilarity reconstruction in information recommendation. [C]// Computational Intelligence and Multimedia Applications, 2003. ICCIMA 2003. Proceedings. Fifth International Conference on 2003. Washington, DC, USA: IEEE Computer Society, 2003: 235-242.

同被引文献20

  • 1陈挺,刘嘉勇,夏天,范刚.基于平板型Web论坛的信息抽取研究[J].成都信息工程学院学报,2009,24(1):1-4. 被引量:9
  • 2奚伟鹏,李昕,蒋凯,武港山.面向网上论坛的信息抽取技术[J].计算机工程,2005,31(4):66-68. 被引量:8
  • 3王兰成,蒋丹,李超.基于中文词义概念的Web信息分类检索研究[J].现代图书情报技术,2005(10):35-37. 被引量:2
  • 4徐晓日.网络舆情事件的应急处理研究[J].华北电力大学学报(社会科学版),2007(1):89-93. 被引量:141
  • 5Qingliang Miao, Qiudan Li, Ruwei Dai. AMAZING: A sentiment mining and retrieval system [J]. Expert Systems with Applications: An International Journal (S0957-4174), 2009, 36(3): 7192-7198.
  • 6Minqing Hu, Bing Liu. Opinion extraction and summarization on the web [C]// Proceedings of the 21st National Conference on Artificial Intelligence, ($978-1-57735-281-5), Boston, Massachusetts, USA, July 16-20, 2006. 2006: 1621-1624.
  • 7Satoshi Morinaga, Kenji Yamanishi, Kenji Tateishi, Toshikazu Fukushima. Mining product reputations on the Web [C]// Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, (S1-58113-567-X), Edmonton, Alberta, Canada, July 23-26, 2002. 2002: 341-349.
  • 8Rakesh Agrawal, Tomasz Imielinski, Arun Swami. Mining association rules between sets of items in large databases [C]// Proceedings of the 1993 ACM SIGMOD international conference on Management of data, (S0-89791-592-5), Washington, DC, United States, May 25-28, 1993. USA: ACM, 1993: 207-216.
  • 9Gruhl D, Guha R, Liben-Nowell D, Tomkins A. Information diffusion through blogspace [J]. SIGKDD Explorations (S1931-0145), 2004, 6(2): 43-52.
  • 10Weisbuch G. Bounded confidence and social networks [J]. The European Physical Journal B-Condensed Matter and Complex Systems (S1434-6028), 2004, 38(2): 339-343.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部