期刊文献+

摄动法求亚式期权的近似解

Obtain an Approximate Solution of Asian Option by Perturbation Method
下载PDF
导出
摘要 阐述了连续样本的算术亚式期权定价模型。首先证明了该定价模型中的偏微分方程不能转化为常系数的热传导方程。因此,不能通过一般的方法来求解。接下来,采用摄动法求解经过变换的偏微分方程,得到了一个序列形式的近似解析解。随后,本文给出了该序列近似解析解的图像,从而判断出该序列具有很好的收敛性。 The price model of continuously sampled arithmetic Asian options is identified. First the partial differential equation (PDE) of the model can not be transformed into a heat equation with constant coefficients,which means that it can not be solved in an ordinary way. Then the transformed PDE with a perturbation method is solved and got a series formed analytical solution. A picture of the series shows that the series formed solution convergents perfectly.
作者 王黎
机构地区 上海交通大学
出处 《科学技术与工程》 2008年第22期6058-6061,共4页 Science Technology and Engineering
关键词 亚式期权 摄动法 解析解 asian perturbation method analytical solution
  • 相关文献

参考文献13

  • 1[1]Zhang Jin E..Pricing Continuously Sampled Asian Options with Perturbation method.The Journal of Futures Market,2003;23(6):535-560
  • 2徐承龙,顾恩君.具有固定敲定价格的算术平均亚式期权的计算[J].应用数学与计算数学学报,2004,18(2):8-14. 被引量:2
  • 3[3]Kemna A G Z,Vorst A C F.A pricing method for options based on average asset values.Journal of Banking and Finance,1990;14:113-129
  • 4[4]Carverhill A,Clewlow L.Flexible convolution.Risk.1992;5(4):25-29
  • 5[5]Rogers L,Shi Z.The value of an Asian option.Journal of Applied Probability.1991;32:1077-1088
  • 6[6]Turnbull S,Wakeman L.A quick algorithm for pricing European average options.Journal of Financial and Quantitative Analysis.1991;1(26):377-389
  • 7[7]Levy E,Turnbull S.Average intelligence.Risk.1992;5:53-59
  • 8[8]German H,Yor M.Bessel process,Asian options,and perpetuities.Mathematical Finance.1992;3:349-375
  • 9[9]Bouaziz L,Briys E,Crouhy M.The pricing of forward starting Asian options.Journal of Banking and Finance.1995;18:823-839
  • 10[10]Chalasani P,Jha S,Warikooty A..Accurate approximation for European-style Asian options.Journal of Computational Finance.1994;4:11-13

二级参考文献17

  • 1Jin E.Zhang. Pricing Continously Sampled Asian Options with Perturbation Methed, Journal of Compuational Finance, 2001, 23(4): 535-560.
  • 2You-lan Zhu. Evaluation of discretely sampled asian options by finite difference methods.University of North Carolina at Charlotte, 2000.
  • 3MICHAEL D. MARCOZZI. On the valuation of asian options by variational methods. SIAM J. Sci. Comput., 24(4): 1124-1140.
  • 4Kemna , A. G. Z., and A. C. F. Vorst. A pricing method for options based onaverage asset values. Journal of Banking and Finance, 14: 113-29.
  • 5Jin E.Zhang. A semi-analytical method for pricing and hedging continuously sampled arithmetic average rate options. Journal of Computational Finance, 2001, 5(1): 59-79.
  • 6Carverhill, A., L.Clewlow. Flexible convolution. Risk, 5(4): 25-29.
  • 7Rogers, L., Z. Shi. The value of an Asian option. Journal of Applied Probability, 32: 1077-1088.
  • 8Turnbull, S., L. Wakeman. A quick algorithm for pricing European average options. Journal of Financial and Quantitative Analysis, 26: 377-389.
  • 9Levy, E., S. Turnbull. Average intelligence. Risk, 5(2): 5-9.
  • 10Geman, H., M. Yor. Bessel process, Asian options, and perpetuities. Mathematical Finance,3(4): 349-75.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部