期刊文献+

求解非线性等式和不等式问题的一种光滑化算法

A smoothing method for solving the nonlinear system of equalities and inequalities
原文传递
导出
摘要 给出了求解非线性等式和不等式问题的一种新算法.用Max函数将不等式约束转变为等式约束,建立了一个半光滑的无约束方程组系统,并设计了一种光滑化Gauss-Newton算法求解该系统.在适当条件下,证明了此算法的全局和局部收敛性.数值实验表明此方法的有效性. It is concerned with a new algorithm for solving the nonlinear system of equalities and inequalities. By using the so - called max function, the inequalities are transfered into equalities and a system of semismooth equations is set. Then a smoothing Gauss - Newton method is introduced for solving the reformulated system. The global and local convergence are studied under suitable conditions. Numerical examples are given to show that the new approach is effective.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期553-558,563,共7页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10671163 60474070) 湖南省教育厅基金资助项目(06A069 07A001 06C824) 国家和湖南省重点学科建设项目资助
关键词 等式与不等式系统 半光滑函数 光滑化算法 全局收敛性 system of equalities and inequalities semismooth function smoothing method global convergence.
  • 相关文献

参考文献12

  • 1PSHENICHNYI B N. Newton's method for the solution of systems of equalities and inequalities[J]. Math Notes Acad Sci Ussr, 1970,8:827-830.
  • 2DANIEL J W. Newton's method for nonlinear inequalities[J]. Numer Math, 1973,40:381-387.
  • 3POLYAK B T. Gradient methods for solving equations and inequations[J]. UDSSR Comput Math, 1964,4: 17-32.
  • 4DENNIS J E, El-ALEM M , WILLIAMSON K. A trust-region approach to nonlinear systems of equalities and inequalities [J]. SIAM J Optim, 1999,9(2): 291-315.
  • 5童小娇,周叔子.非线性等式与不等式问题的信赖域算法[J].数值计算与计算机应用,2001,22(1):53-62. 被引量:4
  • 6邵远夫,李成林.Hilbert空间中函数和的次微分规则及应用[J].云南大学学报(自然科学版),2004,26(6):475-478. 被引量:6
  • 7CHEN C, MANGASARIAN O L. A class of smoothing functions for nonlinearand mixed complementarity problems[J]. Comput Optim Appl, 1996,5 : 97-138.
  • 8XIU Nai-hua, ZHANG Jian-zhong. A smoothing Gauss- Newton method for the generalized HLCP[ J]. Journal of Computational and Applied Mathematics, 2001,129: 195-208.
  • 9CLAKE F H. Optimization and nonsmooth analysis[ M]. New York:John Wiley and Sons, 1983.
  • 10QI L, SUN D. Smoothing functions and smoothing newton method for complementarity andvariational inequalitiey problems[ J]. Journal of Optimization Theoryand Applications, 2002,113: 121-147.

二级参考文献13

  • 1袁亚湘,最优化理论与方法,1997年
  • 2Coleman T F,SIAM J Optim,1996年,6卷,2期,418页
  • 3Coleman T F,Math Programming,1994年,67卷,189页
  • 4CLARKE F H, LEDYAEV Y S. Nonsmooth analysis and control theory[M]. NewYork: Springer- verlag,1998.
  • 5BORWEIN J M, ZHU Q J. Viscosity solutions and viscosity subderivatives in smooth Bananch spaces with applications to metric regularity [ J ]. SIAM J Cont and Opti, 1996, 34:1 568-1 591.
  • 6ROCKAFELLAR R T. Proximal subgradients marginal values and augmented Lagrangians in nonconvex optimization[J]. Math Oper Res, 1981,6:424-436.
  • 7LINDENSTRAUSS J, TZAFRIRI L. Classical Bananch spaces: Functionspaces [M]. Berlin: Springer - verlag,1979.
  • 8STUDNIARSKI M, JEYAKUMAR V. A generalized mean- value theorem and optimality conditions in composite nonsmooth minimization[J]. Nonlinear Anal TMA, 1995, 24: 83-894.
  • 9BORWEIN J M, PREISS D. A smooth variational principle with application to subdifferentiability [J].Tran Amer Math Soc, 1987, 303:517-527.
  • 10ZHU Q J. Clarke - Ledyaev mean - value inequalities in smooth Bananch spaces [J]. Nonlinear Anal TMA,1998, 32: 315-324.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部