期刊文献+

一种新的多值属性关联规则挖掘算法 被引量:5

New Mining Algorithm for Quantitative Association Rules
下载PDF
导出
摘要 为解决多值属性的关联规则挖掘问题给出相似属性集合矩阵的概念,提出一种新的多值关联规则挖掘算法——Qarmasm算法。该算法无须扩展事务属性,约简效率高,能够直接生成候选频繁项集,求出其支持度,有效地发现频繁项。给出算法的描述及其复杂性分析。与经典算法的对比表明,该算法具有明显的优势。 In order to resolve the mining problem of the quantitative association rule, a concept of similar attributes set matrix is proposed. In the meanwhile, a new algorithm of the quantitative association rules(Qarmasm) is proposed based on this concept. The algorithm does not need to expend attribution of tradition, and it has higher efficiency of reducing. It can produce pre-frequent itemsets and get support directly, and find frequent itemsets efficiently. The paper analyzes the complexity of algorithm and validates its validity, gives the application and contrast to indicate that this algorithm is much better than the traditional algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第22期77-79,82,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60501006) 陕西省自然科学基金资助项目(2006F43)
关键词 相似属性集合矩阵 频繁模式 关联规则 数据挖掘 similar attributes set matrix: frequent pattern association rule data mining
  • 相关文献

参考文献7

  • 1Agrawal R, lmielinski T, Swanmi A. Mining Association Rules Between Sets of Items in Larger Databases[C]//Proc. of ACM SIGMOD Int'l Conf. on Management of Data. Washington, USA: [s. n.], 1993: 207-216.
  • 2Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns Withotit Candidate Generation[C]//Proc. of the 2000 ACM SIGMOD Int'l Conf. on Management of Data. Dallas, TX, USA: [s. n.], 2000.
  • 3Agrawal R C. A Tree Projection Algorithm for Generation of Frequent ltemsets[J]. J. of Parallel and Distributed Computing, 2001, 61(3): 350-371.
  • 4贺志,黄厚宽,田盛丰.一种优化相关规则的发现方法[J].计算机学报,2006,29(6):906-913. 被引量:12
  • 5张朝晖,陆玉昌,张钹.发掘多值属性的关联规则[J].软件学报,1998,9(11):801-805. 被引量:61
  • 6杨炳儒 孙海洪.语言场理论在挖掘关联规则中的应用[J].计算机科学,2000,27(11):66-69.
  • 7杨炳儒,孙海洪,熊范纶.利用标准SQL查询挖掘多值型关联规则及其评价[J].计算机研究与发展,2002,39(3):307-312. 被引量:26

二级参考文献24

  • 1杨炳儒 孙海洪.语言场理论在挖掘关联规则中的应用[J].计算机科学,2000,27(11):66-69.
  • 2张朝晖,Proceedings of PAKDD,1997年
  • 3Cheung D,IEEE Trans Knowl Data Eng,1996年,8卷,6期,911页
  • 4Han J,IEEE Trans Knowl Data Eng,1996年,8卷,3期,373页
  • 5Carlin B.P.,Louis T.A..Bayes and Empirical Bayes Methods for Data Analysis.2nd Edition.London U.K.:Chapman &Hall,2000
  • 6Light R.J.,Margolin B.H..An analysis of variance for categorical data.Journal of the American Statistical Association,1971,66:534~544
  • 7Steven R.,Matthew S.etal.Integrated Public Use Microdata Series:Version 2.0.Historical Census Projects,University of Minnesota,Minneapolis,1997
  • 8Au W.-H.,Chan K.C.C.,Yao X..A novel evolutionary data mining algorithm with applications to churn prediction.IEEE Transactions on Evolutionary Computation,2003,7 (6):532~545
  • 9http://fuzzy.cs.uni-magdeburg.de/~borgelt,2004年5月9日.
  • 10Agrawal R.,Imielinski T.,Swami A..Mining association rules between sets of items in large databases.In:Proceedings of the ACM SIGMOD,Washington,DC,1993,207~216

共引文献97

同被引文献45

引证文献5

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部