期刊文献+

基于位置和速度的点状运动目标Bayes跟踪

Bayes Tracking for Moving Point Target Based on Position and Velocity
下载PDF
导出
摘要 采用结合概率数据关联的卡尔曼滤波方法,研究一种基于位置、速度信息的微弱点动目标Bayes跟踪技术。其关键是在跟踪区域检测时,检测器以Basyes模式进行工作,检测门限随目标先验概率比变化。提出一种新的门限计算方法。与基于恒虚警概率准则的跟踪技术相比,跟踪过程中检测到的虚警目标明显减少,仿真结果验证了该算法的实时性与精确性。 This paper studies the Bayes weak point moving target tracking technology by using probabilistic data associated with the Kalman filter method, which is based on position, velocity information. The key is in the region of tracking, detector works in Basyes mode, detection threshold changes with goal's priori probability change. A new threshold calculation is proposed. Based on CFAR(CFAR probability) guidelines tracking technologies, the process of detection to track the number of false alarm target is decreased. Simulation results show that it is a real-time and accurate algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第22期223-225,228,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60507005)
关键词 贝叶斯准则 卡尔曼滤波 点目标 Bayesian criteria Kalman filter point target
  • 相关文献

参考文献5

  • 1Askar H. Li Xiaofeng. Li Zaiming. Performance Analysis of Dim Moving Point Target Detection Algorithm[C]//Proc. of International Conference on Communications. Circuits and Systems and WestSino Expositions. [S.l.]: IEEE Press, 2002: 229-242.
  • 2Askar H. Performance Analysis of Dim Moving Point Target Detection Algorithms[C]//Proc. of International Conference on Communication, Circuits and Systems and WestSino Expositions. [S. l.]: IEEE Press, 2002: 605-609.
  • 3Caefer C E, Silveman J. Mooney J M. Optimization of Point Target Tracking Filters[J]. IEEE Transactions. on Aerospace and Electronic Systems. 2000, 36(1 ): 15-24.
  • 4刘志军,陈朝阳,沈绪榜,苏旭武.基于卡尔曼滤波器的背景抑制及小目标检测[J].华中科技大学学报(自然科学版),2004,32(12):7-9. 被引量:13
  • 5艾斯卡尔,那斯尔江.一种基于局部加权非参数回归估计的杂波抑制技术[J].激光与红外,2005,35(4):294-296. 被引量:7

二级参考文献10

  • 1Leonov S. Nonparametric methods for clutter removal.IEEE Trans. on Aerospace and Electronic Systems,2001, 37(3): 832-847
  • 2Leung H, Young A. Small target detection in clutter using recursive nonlinear prediction. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36 ( 2 ):713-718
  • 3Soni T, Zeidler J R, Ku W H. Performance evaluation of 2-D adaptive prediction filters for detection of small objects in image data. IEEE Trans. Image Processing,1993, 2(3): 327-340
  • 4Sang Hongshi, Shen Xubang, Chen Chaoyang. Architecture of a configurable 2-D adaptive filter used for small object detection and digital image processing. Opt.Eng., 2003, 42(8): 2 182-2 189
  • 5Lee E B, Markus L. Foundations of optimal control theory. New York: Wiley, 1967.
  • 6Kaufman H, Woods J, Dravida S, et al. Estimation and identification of two-dimensional images. IEEE Trans.Automatic Control, 1983, 28(7): 745-756
  • 7S C POHLIG.Spatial-Temporal Detection of Electro-Optic Moving Targets[J].IEEE Trans.On Aerospace and Electronic System,1995,32(2):608-616.
  • 8J Y CHEN,L S REED.A detection Algorithm For Optical Targets in Clutter[J].IEEE Trans.on Aerospace and Electronic Systems,1987,23(1):46-59.
  • 9SERGEI LEONOV.Nonparametric methods for clutter removal[J].IEEE Trans.on Aerospace and Electronic Systems,2001,37(3):832-847.
  • 10Christopher G Atkeson,Andrew W Moore,Stefan Schaal.Locally Weighted Learning[DB/OL].http:\www.cc.gatech.edu/fac/Chris.Atkeson.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部