期刊文献+

基于孤立点检测的工作流研究 被引量:2

Research of Workflow Based on Outlier Detection
下载PDF
导出
摘要 信息系统中的工作流程设计将影响企业营运绩效及企业策略的正常发挥。该文以工作流的发生频率,结合以距离为基础的孤立点检测概念,使用经验规则和穷举法方式,挖掘出3种类型的异常工作流,包括各流程中较少发生的异常工作流、整体流程里较少发生的异常工作流以及整体流程中从未执行过的异常工作流。 The workflow is very important in enterprise information system. Irrational workflow not only leads to an awful operation of enterprise, but also limits the executive of business strategy. The algorithm uses the frequency of workflow, the concept of distance-based outlier detection, empirical rule and method of exhaustion to mine three types of workflow outlier, including less happened workflow outlier of each process(abnormal workflow of each process), less happened workflow outlier of all processes(abnormal workflow of all processes) and never happened workflow outlier(redundant workflow).
出处 《计算机工程》 CAS CSCD 北大核心 2008年第22期268-270,共3页 Computer Engineering
基金 国家自然科学基金资助项目(70571032) 江苏省高校自然科学基金资助项目(07KJD120087)
关键词 工作流 孤立点检测 数据挖掘 workflow outlier detection data mining
  • 相关文献

参考文献6

  • 1蒋盛益,李庆华,李新.数据流挖掘算法研究综述[J].计算机工程与设计,2005,26(5):1130-1132. 被引量:21
  • 2Han J W Kamber M 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版杜,2001.147-158.
  • 3卢辉斌,徐刚,李段.一种基于孤立点检测的入侵检测方法[J].微机发展,2005,15(6):93-94. 被引量:3
  • 4Kuramitsu K. Finding Periodic Outliers over a Monogenetic Event Stream[C]//Proc. of International Workshop on Ubiquitous Data Management. Tokyo, Japan: [s. n.], 2005: 97-104.
  • 5Portnoy L, Eskin E, Stolfo S J. Intrusion Detection with Unlabeled Data Using Clustering[C]//Proc. of ACM CSS Workshop on Data Mining Applied to Security. Philadelphia, USA: ACM Press, 2001.
  • 6单世民,邓贵仕,何英昊.数据流中孤立点识别方法[J].计算机工程,2007,33(15):172-174. 被引量:4

二级参考文献32

  • 1熊家军,陈新,李庆华.一种启发式的入侵检测警报概念聚类算法[J].计算机工程,2005,31(7):35-36. 被引量:2
  • 2蒋盛益,李庆华,李新.数据流挖掘算法研究综述[J].计算机工程与设计,2005,26(5):1130-1132. 被引量:21
  • 3卢辉斌,徐刚,李段.一种基于孤立点检测的入侵检测方法[J].微机发展,2005,15(6):93-94. 被引量:3
  • 4单世民,邓贵仕.动态环境下一种改进的自适应微粒群算法[J].系统工程理论与实践,2006,26(3):39-44. 被引量:16
  • 5Babcock B, Babu S, Datar M, et al. Models and issues in data stream systems[C]. Madison, Wisconsin, USA:Proc of ACM SIGMOD/SIGACT Conf on Princ of Database Syst. 2002.1-16.
  • 6O'Callaghan L, Mishra N, Meyerson A, et al. Streaming-data algorithms for high-quality clustering[C]. Proc of IEEE International Conference on Data Engineering, 2002.
  • 7Guha S, Mishra N, Motwani R, et al. Clustering data streams[C].Proc of IEEE Symposium on Foundations of Computer Science (FOCS'00), 2000.71-80.
  • 8Guha S, Meyerson A, Mishra N, et al. Clustering data streams:Theory and practice[J]. Knowledge and Data Engineering, IEEE Transactions, 2003, 15(3):515-528.
  • 9Giannella C, HAN Jia-wei, JIAN Pei, et al. Mining frequent patterns in data streams at multiple time granularities[C]. Proc of the NSF Workshop on Next Generation Data Mining, 2002.
  • 10Aggarwal C, Han J, Wang J, et al. A framework for clustering evolving data streams[C]. Berlin, Germany: Proc of Int Conf on Very Large Data Bases (VLDB'03), 2003.

共引文献136

同被引文献6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部