期刊文献+

一种适合于传感器网络的新型压缩算法研究 被引量:2

Research on new lossless data compression algorithm for WSNs
下载PDF
导出
摘要 数据压缩可以高效节约网络能量,有效延长网络寿命。针对B-LZW算法的缺陷,提出了一种新型的可以直接应用于传感器网络的改进算法—MC-B-LZW;在设计中引入了miniCache,完善了算法的操作性,可使该算法嵌入到现有的各类传感节点中;测试B-LZW及其改进算法MC8,MC16,MC32和MC64的性能;通过比较压缩率和执行时间2个指标,得出结论:MC16算法性能最优,压缩率较B-LZW平均提高13.6%,执行时间较B-LZW几乎没有延长,是一种比较理想的压缩算法。 Data compression can effectly save energy of network and prolong its life. Aimed at the defect of B- LZW algorithm, a modified compression algorithm for sensor nexworks--MC-B-LZW is introduced. The algorithm is enabled to be embedded in existing sensor network nodes by adding an miniCache module perfecting its maneuverability;test of the performance index for B-LZW and MC8, MC16, MC32, MC64 improved algorithms is accomplished. It is concluded that MC16 performs well in almost all the datasets with increased data compression ratio of average 13.6 % and no time cost.
出处 《传感器与微系统》 CSCD 北大核心 2008年第11期60-62,65,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(607710287) 湖南省科技计划资助项目(2006ZK3108)
关键词 传感器网络 数据压缩 LZW算法 BWT算法 sensor network data compression LZW algorithm BWT algorithm
  • 相关文献

参考文献6

  • 1Yong Yao,Johannes Gehrke. Query processing for sensor networks[ C ]//Proclst Biennial Conf Innovative Data Systems Research(CIDR) , ACM Press ,2003:46 -55.
  • 2Ioannidis Y E, Poosala V. Histogram-based approximation of setvalued query answers[ C ]//Proceedings of the 25th International Conference on Very Large Data Bases, 1999 : 174 - 185.
  • 3Deligiannakis A, Kotidis Y, Roussopoulos N. Hierarchicalin-network data aggregaton with quality guarantees [ C ]//Proceedings of EDBT,2004:658 -675.
  • 4Lin S,Gunopulos D,Kalogeraki V,et al. A data compression technique for sensor networks with dynamic bandwidth allocation[ C ]// Proceedings of the 12th International Symposium on Temporal Representation and Reasoning( TIME'05 ) ,2005 : 186 -188
  • 5邓宏贵,王晋秀,曹莉凌,朱芝靖,陈良款.基于BWT改进的LZW算法在传感器网络中的应用[J].传感技术学报,2008,21(6):1047-1051. 被引量:6
  • 6Burrows M, Wheeler D J. A block-sorting lossless data compression algorithm [ R ]. SRC Research Report 124, Digital Systems Research Center, Palo Alto, 1994

二级参考文献16

  • 1王泉,齐春,罗新民,梁嵩.LZW压缩算法的改进及其参数优化分析[J].重庆邮电学院学报(自然科学版),2005,17(3):351-355. 被引量:11
  • 2周四望,林亚平,张建明,欧阳竞成,卢新国.传感器网络中基于环模型的小波数据压缩算法[J].软件学报,2007,18(3):669-680. 被引量:41
  • 3Arici T, Gedik B, Altunbasak Y, and Liu L. PINCO: a Pipelined In-Network Compression Scheme for Data Collection in Wireless Sensor Networks[C]// Proceedings of 12th International Conference on Computer Communications and Networks, 2003,10(7): 539-544.
  • 4Lin S, Gunopulos D, Kalogeraki V, Lonardi S. A Data Compression Technique for Sensor Networ-Ks with Dynamic Bandwidth Allocation[C]// Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME'05), Volume 00, PP. 186-188, June ,2005.
  • 5Antonios Deligiannakis, Yannis Kotidis, and Nick Roussopoulos. Compressing Historical Information in Sensor Networks [C]// Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, 2004,6(4): 527-538.
  • 6Nelson M. Data Compression with the Burrows-Wheeler Transform[J]. Dr. Dobb' s Journal of Software Tools, 1996, 16(5):46-50.
  • 7Burrows M,Wheeler D J. A Block-sorting Lossless Data Compression Algorithm[R]. Technical Report SRC 124, Digital System Research Center, Palo Alto, CA, 1994.
  • 8吴乐南.数据压缩原理与应用(第二版)[M].北京:电子工业出版社,2003.
  • 9Manzini G. The Burrows-Wheeler Transform: theory and practice[C]//Proc of the 24th International Symposium on Mathematical Foundations of. Computer Science (MFCS 99), pages 34-47. Springer-Verlag LNCS n. 1672, 1999.
  • 10Giovanni Manzini. An Analysis of the Burrows-Wheeler Transform[J]. Jorunal of the Association for Computing Machinery, 2001,48(3) : 407-430.

共引文献5

同被引文献36

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部