期刊文献+

被动声技术在交通流量测量领域的应用

Application of passive acoustic technology in field of traffic flow measurement
下载PDF
导出
摘要 交通指挥决策的重要依据是交通流量,而目前的交通流量测量设备还存在着各种各样的问题,与此相比,作为无源测量的被动声技术具有受外界因素影响较小的特性。分析说明了时空谱合成目标运动分析方法,并用基于小生境的粒子群优化算法对时空谱进行优化。在与传统算法的对比实验中,时空谱合成目标运动分析方法对于单目标和多目标的区分、定位都有着良好的表现,这也说明了被动声技术在交通流量测量领域具有广阔的应用前景。 Traffic flow is considered as an important basis for the traffic command and decision-making, and various problems still exist in the current traffic flow measurement equipment. Compared to this the passive acoustic technology has the characteristic affected less by the outer factors as a passive measurement. The method for multiple target motion analysis is analysed and explained based on a integrated space-time spectum which is optimized through particle swarm optimization(PSO)of niching algorithn. In the tests compared to the traditional algorithms, the method manifests well for the distinguishion and location of single and multiple objects. It' s shown that the passive acoustic technology has broad application prospects in the field of the traffic flow measurement.
出处 《传感器与微系统》 CSCD 北大核心 2008年第11期109-111,114,共4页 Transducer and Microsystem Technologies
关键词 被动声技术 流量检测 多目标分析 微粒群算法 passive acoustic technology flow rate measurement muhi-target analysis particle swarm optimization (PSO)
  • 相关文献

参考文献8

  • 1Carter G C. Time delay estimation[ J]. IEEE Trans ASSP, 1981, 29 (6) :461 -462.
  • 2张向晖.声测定位原理及误差分析[J].电声技术,1997,21(3):6-7. 被引量:5
  • 3Maranda B H, Fawcett J A. Detection and localization of weak targets by space-time integration [ J]. IEEE J Oce Eng, 1991, 16(2) :189 -194.
  • 4毛卫宁,钱进,蔡卫平.基于合成时空谱的多目标运动分析[J].东南大学学报(自然科学版),2003,33(2):131-133. 被引量:1
  • 5王俊年,申群太,沈洪远,周鲜成.一种改进的小生境微粒群算法[J].山东大学学报(工学版),2005,35(3):98-102. 被引量:7
  • 6Zhang Jun, Zhang Jingru, Li Kang. A sequential niching technique for particle swarm optimization [ C ]//International Conference on Intelligent Computing,2005:390 -399
  • 7谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 8Parsopoulos K E, Vrahatis M N. On the computation of all global minimizes through particle swarm optimization [ J ]. IEEE Transactions on Evolutionary Computation ,2004,8 (6) :211 -224

二级参考文献45

  • 1陈国良 王熙法 庄镇泉.遗传算法及其运用[M].北京:人民邮电出版社,1996.111-116.
  • 2[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 3[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 4[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 5[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 6[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 7[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 8[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 9[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 10[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.

共引文献431

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部