期刊文献+

基于小波神经网络的柑橘pH机器视觉检测 被引量:4

Citrus Fruits pH Value Measurement Based on Machine Vision with Wavelet Neural Network Model
下载PDF
导出
摘要 【目的】研究涟红温州蜜柑pH的机器视觉检测及影响检测精度的因素。【方法】对机器视觉系统采集的柑橘图像进行图像裁切、RGB空间至HSI空间的转换和差值法去图像背景,用色调H和饱和度S为输入,建立小波神经网络柑橘pH预测模型,无损检测柑橘pH。【结果】30个测试样本的检测结果表明,预测偏差最大值为9.95%、偏差最小值为-3.6%、平均偏差为0.8%、标准偏差为2.95%,pH±0.1精度内的正确识别率为80%,pH±0.2精度内的正确识别率为93.33%。【结论】涟红温州蜜柑pH与果皮色泽之间具有相关性,可用机器视觉检测其pH。但进一步提高预测精度,首先须在图像处理环节上去除各种虫斑与病斑的影响。 [Objective] pH value measuring method of 'Lianhong' citrus fruits based on machine vision and factors influencing measurement accuracy were studied. [ Method ] Images of citrus fruits from machine vision system were processed by cutting, converting from RGB space to HSI space, removing background by deviation. A wavelet neural network model was constructed to detect pH value of citrus fruits non-destructively, the inputs of the model were image hue H and saturation S. [ Result ] Results of test of 30 samples showed that the maximal deviation of pH value was 9.95%, the minimal was -3.6%, average deviation was 0.8%, standard deviation was 2.95%. The correctness of detection for accuracy ±0.1 and ±0.2 were 80% and 93.33%, respectively. [ Conclusion ] pH value has correlation to pericarp color and luster, and can be detected with machine vision method. To improve the detection accuracy, influence of speckles of insects and diseases should be removed during image processing.
出处 《中国农业科学》 CAS CSCD 北大核心 2008年第11期3741-3745,共5页 Scientia Agricultura Sinica
基金 湖南省教育厅科学研究项目(06D059)
关键词 柑橘 PH 小波神经网络 图像处理 Citrus fruit pH Wavelet neural network Image processing
  • 相关文献

参考文献26

  • 1Molto E, Selfa E, Ferriz J, Conesa E, Gutierrez A, An aroma sensor for assessing peach quality. Journal of Agricultural Engineering Research, 1999,72:311-316.
  • 2Pathange L P, Mallikarjunan P, Marini R P, O'Keefe S, Vaughan D. Non-destructive evaluation of apple maturity using an electronic nose system. Journal of Food Engineering, 2006, 77:1018-1023.
  • 3Kim S M, Chen P, McCarthy M J, Zion B. Fruit internal quality evaluation using online nuclear magnetic resonance sensors. Journal of Agricultural Engineering Research, 1999, 74: 293-301.
  • 4de Belie N, Schotte S, Lammertyn J, Nicolai B, de Baerdemaeker J. Firmness changes of pear fruit before and after harvest with the acoustic impulse response technique. Journal of Agricultural Engineering Research, 2000, 77(2): 183 - 191.
  • 5Duprat F, Grotte M, Pietri E, Loonis D. The acoustic impulse response method for measuring the overall firmness of fruit. Journal of Agricultural Engineering Research, 1997, 66(4): 251-259.
  • 6Mizrach A, Galili N, Gan-mor S, Flitsanov U, Prigozin I. Models of ultrasonic parameters to assess avocado properties and shelf life. Journal of Agricultural Engineering Research, 1996, 65(3): 261-267.
  • 7Mizrach A, Flitsanov U, Fuchs Y. An ultrasonic nondestructive method for measuring maturity of mango fruit. Transactions of the ASAE, 1997, 40(4): 1107-1111.
  • 8Bochereau L, Bourdgine P, Palagos B. A method for prediction by combining data analysis and neural networks: application to prediction of apple quality using near infrared spectra. Journal of Agricultural Engineering Research, 1992, 51 (3): 207-216.
  • 9Lu R, Ariana D. A near-infrared sensing technique for measuring internal quality of apple fruit. Applied Engineering in Agriculture, 2002, 18(5): 585-590.
  • 10Carlomagno G, Capozzo L, Attolico G, Distante A. Non-destructive grading of peaches by near-infrared spectrometry, lnfraredPhysics & Technology, 2004, 46: 23-29.

二级参考文献29

  • 1杨秀坤,陈晓光,马成林,方进,于立彪.用遗传神经网络方法进行苹果颜色自动检测的研究[J].农业工程学报,1997,13(2):173-176. 被引量:31
  • 2章毓晋.图像处理和分析[M].清华大学出版社,1999,3..
  • 3Gunasekaran S, Cooper T M, Berlage A G, et al. Image processing for stress cracks in corn kernels[J].Transactions of the ASAE,1987.30(1):266--271.
  • 4Bowers S V, Dodd R B, Han Y J. Nondestructive testing to determine internal quality of fruit[J]. ASAE Paper.1988,88--6569.
  • 5Berlow S M, Aneshansley D J. Throop J A. el al.Compmer analysis of ultrasonic images for grading beef[J]. ASAE Paper,1989.89--3559.
  • 6Miller B K. Delwiche M J. A color vision system for peach grading[J]. Transaclions of the ASAE. 1989.32(4) : 1484--1490.
  • 7Throop J A. Rehkugler G E. Upchurch B L. Application of computer vision for detecting watercore in apples[J].Transactions of the ASAE. 1989.32(6) :2087-- 2092.
  • 8Choi K. Lee G,Han Y J,et al. Tomato maturity evaluation using color image analysis[J]. Transactions of the ASAE,19,95,38(1): 171--176.
  • 9彭玉华.小波变换与工程应用[M].京:科学出版社,2002..
  • 10Zhang Qinhua,Benveniste Al.Wavelet networks.IEEE Trans.on NeuralNetworks,1992,3(6):889-898.

共引文献183

同被引文献29

  • 1蔡健荣,赵杰文.自然场景下成熟水果的计算机视觉识别[J].农业机械学报,2005,36(2):61-64. 被引量:49
  • 2郭英娜,姜茁松,张敏,冯丽娟,赵进英,李金昶.固相萃取富集-高效液相色谱法测定环境水中多菌灵和噻菌灵[J].分析化学,2005,33(3):395-397. 被引量:46
  • 3凌云,王一鸣,孙明,张小超.基于分形维数的垩白米图像检测方法[J].农业机械学报,2005,36(7):92-95. 被引量:31
  • 4应义斌,徐惠荣,徐正冈.用于柑桔成熟度无损检测的色度频度序列法研究[J].生物数学学报,2006,21(2):306-312. 被引量:23
  • 5Kondo N, Ahmad U, Monta M. Murase H. Machine vision based quality evaluation of Iyokan orange fruit using neural networks[J]. Computers and Electronics in Agriculture ,2000,29 (1 -2) :135 - 147.
  • 6Carlomagno G, Capozzo L, Attolico G. Non-destructive grading of peaches by near-infrared spectrometry[ J]. Infrared Physics & Technology, 2004, 46 ( 1 - 2) : 23 - 29.
  • 7Butz P, Hofmann C, Tauscher B. Recent developments in noninvasive techniques for fresh fruit and vegetable internal quality analysis[J]. Journal of Food Science, 2005, 70 (9) :131 -141.
  • 8Zdunek A, Muravsky L, Frankevych L, et al. New nondestructive method based on spatial-temporal speckle correlation technique for evaluation of apples quality during shelf-life[ J ]. Int. Agrophysics, 2007, 21 ( 3 ) : 305 - 310.
  • 9Artur Zdunek, Ludmyla Frankevych, Krystyna Konstankiewicz, et al. Comparison of puncture test, acoustic emission and spatial-temporal speckle correlation technique as methods for apple quality evaluation [ J]. Acta Agrophysica, 2008, 11 ( 1 ) : 303 - 315.
  • 10Barcelon E G, Tojo S, Watanabe K. X-ray computed tomography for internal quality evaluation of peaches[ J]. Journal of Agricultural Engineering Research, 1999, 73 (4) :323 - 330.

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部