期刊文献+

基于单导脑电经验模式分解的癫痫发作预测 被引量:1

Predicting epileptic seizure by empirical mode decomposition and complexity analysis of single-channel scalp electroencephalogram
下载PDF
导出
摘要 目的寻找一种通过单通道脑电分析实现癫痫发作预报的新方法。方法从西京医院癫痫中心的临床病例中选择7名受试者记录癫痫发作前后8个通道的脑电,对发作前的各导脑电信号进行经验模式分解,提取分解后各分量的复杂性测度,将其作为一个4层(7-6-2-1)神经网络的输入进行非线性分类,神经网络的训练采用去一循环法(leave one out)。结果研究表明,所提出的方法在预报癫痫发作时的表现为:根据所用脑电导联不同,准确度为71.7%-78.3%,特异性为71.4%-88.1%,敏感性为50%-77.8%范围。另外,系统运算速度足够快,适合临床实时检测需要。结论所提出的方法在预测癫痫发作时有一定优势,但进一步的研究仍然是必要的。 Aim To find a new approach to recognize and predict successful epileptic seizures by using single-channel electroencephalogram(EEG) analysis.Methods Eight channels of EEG from each patient of the seven consenting patients with generalized epilepsy were collected in Epilepsy Center of Xijing Hospital.The raw EEGs were decomposed by the algorithm of empirical mode decomposition(EMD),the complexity measures were extracted from the seven components of EMD,and then a four layer(7-6-2-1) artificial neural network(ANN) was employed for prediction,using the extracted measures as inputs to the ANN.Training and testing the ANN used the ′leave one out′strategy.Results The performance obtained for the proposed scheme in predicting seizures is: sensitivity 50%~77.8%,specificity 71.4%~88.1% and accuracy 71.7%~78.3%,depending on the different EEG leads.This method is also computationally fast and can be used to monitor epilepsy for real-time clinical application.Conclusion The results show the proposed system has a certain advantage in predicting seizure.Additional studies need to be carried out on a wider patient population to further evaluate and improve the design.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期709-713,共5页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(60371023) 陕西省自然科学研究计划资助项目(SJ08-ZT13)
关键词 癫痫 脑电图 复杂度 经验模式分解 人工神经网络 epilepsy electroencephalogram complexity empirical mode decomposition(EMD) artificial neural network(ANN)
  • 相关文献

参考文献14

  • 1ENGEL J J, PEDLEY T A. Epilepsy: A Comprehensive Textbook [ M ]. Philadelphia, PA : Lippincott Raven, 1997.
  • 2LITT B, ECHAUZ J. Prediction of epileptic seizures [ J]. The Lancet Neurology, 2002,1:22-31.
  • 3LASEMIDIS L D. Epileptic seizure prediction and control [ J ]. IEEE Trans on Biomed 1 Eng, 2003,50 (5) : 549- 556.
  • 4LEHNERTZ K, MORMANN F, KREUZ T, et al. Seizure Prediction by Nonlinear EEG Analysis[ M ]. January/February: IEEE Engineering in Medicine and Biology Magazine ,2003:57-64.
  • 5HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis [ J ]. Proc R Soe Lond A, 1998,454:903-995.
  • 6HUANG N E,SHEN Z, LONG S R. A new view of nonlinear water waves : The Hilbert spectrum [ J ]. Annu Rev Fluid Mech, 1999,31:417-457.
  • 7LEMPEL A, ZIV J. On complexity of finite sequences [J]. IEEE Trans on Inform Theor,1976; 22:75-88.
  • 8KASPER K, SCHUSTER H G. Easily calculable measure for complexity of spatial-emporal pattern [ J ]. Phys Rev A, 1987 ; 36:843-848.
  • 9LIPPMANN R P. An Introduction to Computing with Neural nets [ J ]. IEEE ASSP Magazine, 1987, (4) :4-22.
  • 10MIRCHANDAMI G, CAO W. On hidden nodes for neural nets[J]. IEEE Trans on Circuits and System, 1989; 36: 661-664.

同被引文献31

  • 1白冬梅,邱天爽,李小兵.样本熵及在脑电癫痫检测中的应用[J].生物医学工程学杂志,2007,24(1):200-205. 被引量:25
  • 2卞宁艳,曹洋,王斌,顾凡及,张立明.基于二阶C_0复杂度的癫痫发作预测[J].生物物理学报,2007,23(1):67-74. 被引量:6
  • 3孔娜,贾文艳,马骏,高小榕,高上凯.大鼠癫痫发作可预测性的研究[J].北京生物医学工程,2007,26(2):167-171. 被引量:4
  • 4Elger CE. Future trends in epileptology. Curr Opin Neurol, 2001, 14: 185-186.
  • 5Feldwiseh-Drentrup H, Sehelter B, Jachan M, et al. Joining the benefits : combining epileptic seizure prediction methods. Epilepsia, 2010, 51:1598 -1606.
  • 6Stacey W, Le Van Quyen M, Mormann F, et al. What is the present-day EEG evidence for a preictal state.'? Epilepsy Res, 2011, 97:243-251.
  • 7Carney PR, Myers S, Geyer JD. Seizure prediction : methods. Epilepsy Behav, 2011, 22:94-101.
  • 8Mormann F, Andrzejak RG, Elger CE, et al. Seizure prediction : the long and winding road. Brain, 2007, 130:314-333.
  • 9Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica D Nonlinear Phenomena. 1983, 9 : 189-208.
  • 10Tito M, Cabrerizo M, Ayala M, et al. Classification of electr- oencephalographic seizure recordings into ictal and interictal files using correlation sum. Comput Biol Med,2009, 39: 604-614.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部