期刊文献+

求解带硬时间窗车辆路径问题的自适应蚁群算法 被引量:4

ADAPTIVE ANT COLONY OPTIMIZATION ALGORITHM FOR SOLVING VEHICLE ROUTING PROBLEM WITH HARD TIME WINDOWS
下载PDF
导出
摘要 蚁群算法具有较强的鲁棒性和优良的分布式计算机制。研究重点是对现有的求解带硬时间窗的车辆路径问题VRP-H (Vehicle Routing Problem with Hard Time Windows)的蚁群算法作出更好的改进,使得算法的计算效率更高且得到的解更优,提出了蚁群算法的改进算法-改进的自适应蚁群算法。该算法先用自适应蚁群算法对VRP-H求得一个可行解,再利用多种改善方法对初始解进一步优化,从而得到最优解。测试时选用Solomon提出的题库,结果表明该算法能够有效地求解VRP-H。 Ant Colony Optimization (ACO) algorithm has stronger robustness and a good distributed computer system. In this paper the focus of the study is on better improving the current ACO algorithm which solves Vehicle Routing Problem with Hard Time Windows(VRP-H) ,to make the algorithm be more effective in computation as well as achieve more optimal solution. The modified algorithm of ACO algorithm was put forward-Improved Adaptive ACO algorithm. The algorithm was that to seek a feasible solution for solving VRP-H by adaptive ACO algorithm first, then to use a variety of methods to further optimize and gain optimal solution. Experimental tests were selected from the Solomon' s test database and the numerical results showed that the algorithm can effectively solve VRP-H.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第11期109-111,共3页 Computer Applications and Software
基金 辽宁省教育厅基金项目(20060671)
关键词 蚁群算法 车辆路径问题 时间窗 自适应 ACO algorithm Vehicle routing problem Time windows Adaptive
  • 相关文献

参考文献9

  • 1Colorni A,Dorigo M,Maniezzo V. Distributed Optimization by Ant Colonies[ A ]. Proceedings of European Conference Artificial Life [C]. Elsevier, Amsterdam, 1991.
  • 2Dorigo M, Maniezzo V, Colorni A. Ant system:optimization by a colony of cooperating agents. IEEE Transaction on Systems, Man, and CyberneticsA-Part B, 1996,26 ( 1 ) :29 - 41.
  • 3张纪会,徐心和.一种新的进化算法——蚁群算法[J].系统工程理论与实践,1999,19(3):84-87. 被引量:125
  • 4Clarck G,Wright J W. Scheduling of vehicles form a central depot to a number of delivery points [ J ]. Operations Research, 1964,12 (4) : 568 -581.
  • 5STtiTzle T, Hoos H. Improvements on the ant system:introducing maxrain ant system[ A]. Proc. Int. Conf. Artificial Neural Network and Genetic Algorithm, Wien : Springer Werlag, 1997.
  • 6Potvin J Y, Kervahut T, Garcia B L, Rousseau J M. The Vehicle Routing Problem with Time Windows Part I:Tabu Search. INFORMS Journal on Computing,1996,8 (2) :158- 164.
  • 7Solomon M M. Algorithms for The Vehicle Routing and Scheduling Problems With Time Window Constraints. Operations Research, 1987, 35(2) :254-265.
  • 8Thangiah S R, Osman I H, Sun T. Hybrid genetic algorithm, simulated annealing and Tabu search methods for vehicle routing problems with time windows [ R ]. Technical Report SRU-CpSc-TR-94-27, Computer Science Department, SlipperyRockUniversity, 1,994.
  • 9Tan K C, Lee L H,Ou K. Artificial intelligence heuristics in solving vehicle routing problems with time window constraints [ J ]. Engineering Applications of Artificial inteUigenee ,2001,14 (6) :825 - 837.

共引文献124

同被引文献53

引证文献4

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部