期刊文献+

一种基于DTFEL的非线性自适应逆控制

DTFEL-based nonlinear adaptive inverse control
下载PDF
导出
摘要 提出一种基于离散时间反馈误差学习(DTFEL)的两自由度非线性自适应逆控制(AIC)方法,其控制器由动态RBF神经网络(DRBFNN)前馈控制器和参数固定的PD反馈控制器构成.PD控制器用来保证闭环系统稳定,动态RBF神经网络以PD控制器输出和反馈误差的线性组合为学习信号,通过一种改进的NLMS(VS MNLMS)算法在线学习和逼近对象的动态逆,提高反馈控制器的性能.稳定性分析证明了该AIC系统稳定.数字仿真结果表明,该AIC具有良好的自适应能力和鲁棒性,是一种有效的非线性控制方法. This paper proposes a discrete-time feedback-error-learning (DTFEL) based adaptive inverse control (AIC) strategy with a architecture of two-degree-of-freedom control, the controller consists of a fixed PD feedback controller and a dynamic RBF neural network feedforward controller. PD controller is used to ensure the stability of the closed system. The DRBFNN is driven to approximate the dynamic inverse model of plant by the linear combination of the output of the PD controller and the feedback error signal using the proposed VS MNLMS algorithm. The proposed AIC system is proved to be stable. Practical simulation results show that .the AIC exhibits excellent adaptive ability and robustness performance, and it is an efficient nonlinear control strategy.
作者 韩华 罗安
出处 《控制与决策》 EI CSCD 北大核心 2008年第11期1315-1320,共6页 Control and Decision
基金 国家自然科学基金项目(60474041) 国家863计划项目(2004AA001032) 国家创新基金项目(05C26224301154)
关键词 离散时间误差反馈学习 自适应逆控制 动态RBF神经网络 VSMNLMS PD控制器 DTFEL Adaptive inverse control Dynamic RBF neural network VS MNLMS PD controller
  • 相关文献

参考文献9

  • 1Gregory L Plett, Hans Bottrieh. DDEKF learning for fast nonlinear adaptiveinverse control [ C]. Proc of the 2002 Int Joint Conf on Neural Network. Honolulu: IEEE, 2002: 2092-2097.
  • 2Gregory L Plett. Adaptive inverse control of linear and nonlinear systems using dynamic neural networks[J]. IEEE Trans on Neural Network, 2003, 14(2): 360- 376.
  • 3Liu Ya-qiu, Ma Guang-fu, Jiang Xue-yuan. A design method for adaptive inverse control using NARX neural networks[C]. Proc of the 5th World Conf on Intellligent Control and Automation. Huangzhou, 2004: 459-463.
  • 4Sirisak Wongsura, Waree Kongprawechnon. Discretetime feedback error learning for unknown nonlinear systems [ C ]. The 2nd Int Conf on Innovative Computing, Information and Control. Kumamoto: IEEE, 2007: 141-144.
  • 5Eiichi Muramatsu, Keiji Watanabe. Feedback error learning control without recourse to positive realness [J]. IEEE Trans on Automatic Control, 2004, 49(10) : 1762-1769.
  • 6Ruan Xiao-gang, Liu Liang, Yu N model of feedback error learning estimator[C]. Proc of the 6th World ai-gong, et al. A based on Kalman Conf on Intelligent Control and Automation. Dalian, 2006:4190-4194
  • 7Hyun-Chool Shin, Ali H Sayed, Woo-Jin Song. Variable step-size NLMS and affine projection algorithms[J] . IEEE Signal Processing Letters, 2004, 11(2) : 132-135.
  • 8Tiebao Yang, Behnam Shahrrava. Performance of variable step-size LMS algorithms for linear adaptive inverse control systems[C]. Conf on Electrical and Computer Engineering. Canadian, 2005: 755-758.
  • 9古德温 孙贵生.自适应滤波、预测与控制[M].北京:科学出版社,1992..

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部