摘要
对于任意的f∈Lp,0〈p〈1K为正整数,存在n阶代数多项式Pn,使得‖f-Pn‖p≤cω^ψk(f,1/n)这里ω^ψk(f,t)是f在Lp中的pitzian-Totik光滑模,C是与K,P有关的常数,如果f是不减的,K≤2,则Pn也是不减的,文中证明了K≥3不成立,如果f是凸的,K≤2,则Pn是凸的,文中证明了K≥4不成立。
That for f∈L_p0<p<1 and k a positive integer there exists an algebraic polynomial P_n of degree≤n such that whereω_K~ψ (f, t)is the Ditzian-Totik modulus of smoothness of in L_p and C is a constant depending only on k and p. 2f f is nondecreasing and k≤2 then the polynomial P_n can also be taken to be nondecreasing we prove this cannot hold for k≥3,If f is convex and k≤2,then the polynimial P_n can also be taken to be convex we prove this cannot hold for k ≥4.
出处
《电力学报》
1997年第3期36-38,共3页
Journal of Electric Power