期刊文献+

尿素反应法制备介孔Ni-Mo复合氧化物 被引量:7

Synthesis of Mesoporous Ni-Mo Mixed Oxides with Urea Method
下载PDF
导出
摘要 采用尿素反应法合成出具有介孔结构的Ni-Mo复合氧化物。用XRD、低温氮气吸附-脱附表征、HRTEM、TG-DTA、FTIR等分析手段对所合成的Ni-Mo复合氧化物及其前躯体进行了表征,并确定了制备Ni-Mo复合氧化物适宜的焙烧温度。以2%二苯并噻吩(DBT)溶液为模型化合物,在固定床连续高压微反装置上考察了介孔Ni-Mo复合氧化物作为催化剂的加氢脱硫(HDS)性能。尿素反应法合成的Ni-Mo复合氧化物具有较高的比表面积,达到124m2·g-1,适宜的孔容0.22mL·g-1,和理想的孔径分布,平均孔径为5.8nm。HDS活性评价表明,这种催化剂具有较高的脱硫率和加氢活性,在反应温度为280℃时脱硫率可达100%,远高于对比催化剂Ni-Mo/Al2O3。 Mesoporous Ni-Mo mixed oxide was synthesized using urea method. The Ni-Mo mixed oxide and precursor were characterized by X-ray powder diffraction analysis (XRD), low temperature nitrogen adsorptiondesorption, HRTEM, TG-DTA, FTIR techniques, and the optimum calcination temperature of Ni-Mo mixed oxide precursors was detemined. The mesoporous Ni-Mo catalyst was prepared with the Ni-Mo mixed oxides and its activity of hydrodesulfurization(HDS) was also evaluated in a continuous flow micro-reactor using dibenzothiophene(DBT) as a model compound. The Ni-Mo mixed oxide has higher specific area of 124 m2· g^-1 proper pore volume of 0.22 mL· g^-1, and ideal average pore size of 5.8 nm. The evaluation results show that the catalyst has excellent performance for hydrodesulfurization, when the reaction temperature is 280 ℃, the desulfurization rate is 100%, which is much higher than the conventional catalyst Ni-Mo/Al2O3.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2008年第11期1782-1788,共7页 Chinese Journal of Inorganic Chemistry
基金 国家“973”计划(No.2004CB217807) 中国石油天然气集团公司创新基金(No.06E1022)资助项目
关键词 尿素 Ni-Mo复合氧化物 加氢脱硫 二苯并噻吩 urea Ni-Mo mixed oxides hydrodesulfurization Dibenzothiophene
  • 相关文献

参考文献15

  • 1Grange P, Vanhaeren X. Catal. Today, 1997,36(4):375-391.
  • 2SUN Jian-Jun(孙建军),YANG Bo—Lun(杨伯伦),LIN Hong—Ye(林宏业).Modern Chemical Industry(Xiandai Huagong),2003,23(Supplemend):33-36.
  • 3MAO Fu-IJin(茆福林),DAI Chun-Hua(戴春华),PENGBing-Cheng(彭秉成), et al. Applied Chemical lndustry(Yingyong Huagong), 2007,36(5):446-447.
  • 4WANG Shao—Cheng(SE少成),HU Jian—Guo(胡建国),MA Lin (马林),et al. J. Fudan University(Natural Science)(Fudan Xuebao(Ziran Kexueban) ), 2003,42(6):1015-1019.
  • 5XU Jing(许兢),CHEN Qing-Hua(陈庆华),QIAN Qing—Rong (钱庆荣). Chinese J. Structural Chemistry (Jiegou Huaxue), 2003,22(2):233-237.
  • 6LIU Chao-Feng(刘超峰),HU Xing—Wei(胡行为),ZU Yong(祖康). J. lnorg. Mater.(Wuji Cailiao Xuebao), 1999,14(3): 391-396.
  • 7WANG Huan-Ying(王焕英), SONG Xiu-Qin(宋秀芹), CHEN Ru-Fen(陈汝芬). J. Hebei Normal University(Natural Science Edition) (Hebei Shifan Daxue Xuebao (Ziran Kexueban)), 2004,28(2):162-165.
  • 8QIN Ming-Li(秦明礼), QU Xuan-Hui(曲选辉), XIAO Ping-An (肖平安), et al. Materials Science and Engineering of Powder Metallurgy(Fenmo Yejin Coiliao Kexue Yu Gongcheng), 2002, 7(4):277-282.
  • 9YANG Piao-Ping (杨飘萍), SU Mei-Ping (宿美平), YANG Xu-Wei(杨胥微), et al. Chinese J. lnorg. Chem.(Wuji Huaxue Xuebao), 2003,19(5):485-490.
  • 10Sergio L, Gonzatlez-Cortes, Tian-Cun Xiao, et al. Appl. Catal. A, 2006, 302(2): 264-273.

同被引文献82

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部