期刊文献+

席夫碱大环铜配合物的化学核酸酶活性研究(英文) 被引量:6

Chemical Nuclease Activities of Schiff Base Macrocyclic Copper(Ⅱ) Complexes
下载PDF
导出
摘要 对3种结构相近的席夫碱四氮大环草酰胺铜配合物(CuL1-3)的化学核酸酶活性进行比较研究。结果表明:这类配合物的化学核酸酶活性与中心金属离子的类型、配体的结构、溶液的pH值、离子强度及配合物的浓度等都有关系。3种配合物表现出来的化学核酸酶活性顺序为CuL3>CuL2>CuL1。CuL3的DNA切割反应表现为典型的假一级连续反应。在80μmol·L-1CuL3和2mmol·L-1H2O2的存在下,就超螺旋DNA向切口开环型DNA进而向线型DNA的转化而言,反应速率常数分别为0.0440±0.0015min-1(k1)和0.00352±0.00018min-1(k2)。 The chemical nuclease activities of three closely related Schiff base tetraazamacrocyclic oxamido copper(Ⅱ) complexes (CuL^1-3)were compared and the result shows that their chemical nuclease activities follow the order of CuL^3〉CuL^2〉CuL^1. Where complexes CuL^1-3 are [5,6-d] [ 13,14-d]dibenzo- 1,4,8,11 -tetraazacyclotetradeeane-dione-2,3-diene-7,11-di-ethylcarboxylate-7,12 Copper(Ⅱ), [5,6-d][13,14-d]dibenzo-10-methyl-1,4,8,11-tetraazacyclo- tetradeeane-dione-2,3-diene-7,11-di-ethylearboxylate-7,12 Copper (Ⅱ) and [5,6-d] [13,14-d]dibenzo-[9,10-d] - cyclehexano-1,4,8,11-tetraazacyclotetradecane-dione-2,3-diene-7,11-di-ethylcarboxylate-7,12 Copper(Ⅱ), respectively. The interactions of CuL^3 with DNA were studied in detail, and the results show that the chemical nuclease activity of this complex is affected by central metal ions, structure of ligands, pH value, ion strength and complex concentration. DNA cleavage reaction in presence of the copper (Ⅱ) complexes is a typical pesudo-first-order consecutive reaction, and the rate constants of 0.044 0±0.001 5 min^-1 (k1) and 0.003 52±0.000 18 min^-1 (k2) for the conversion of supercoiled to nicked DNA and nicked to linear DNA are obtained in presence of 80 μmol· L^-1 CuL^3 and 2 mmol· L^-1 H2O2, respectively.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2008年第11期1890-1894,共5页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No20675041) 天津市应用基础及前沿技术研究计划(No.08JCZDJC21200)资助项目
关键词 席夫碱大环铜配合物 化学核酸酶 PBR 322 DNA DNA切割 Schiff base macrocyclic copper(Ⅱ) complexes chemical nuclease pBR 322 DNA DNA cleavage
  • 相关文献

参考文献11

  • 1Dhara K, Ratha J, Manassero M, et al. J. Inorg. Biochem., 2006,101:95-103.
  • 2Arounaguiri S, Easwaramoorthy D, Ashokkumar A, et al. Proc. Indian. Acad. Sci.(Chem. Sci.), 2000,112:1-17.
  • 3I Zhou D-M, Taira K. Chem. Rev., 1998,98:991-1026.
  • 4Pogozelski W K, Tullius T D. Chem. Rev., 1998,98:1089- 1108.
  • 5Muller J G, Chen X, Dadiz A C, et al. J. Am. Chem. Soc., 1992,114:6407 -6411.
  • 6Kong D M, Wang J, Zhu L N, et al. J. Inorg. Biochem., 2008,102:824-832.
  • 7Black D S C, Moss G I. Aust. J. Chem., 1987,40:129-142.
  • 8Gao E Q, Yang G M, Liao D Z, et al. Transition Met. Chem,, 1999,24:244-246.
  • 9Pamatong F V, Detmer C A, Bocarsly J R. J. A m. Chem. Soc., 1996,118:5339-5345.
  • 10ZHOU Qing—Hua(周庆华),YANG Pin(杨频).Chinese J.Inorg. Chem.(Wuji Huaxue Xuebao), 2005,21:960-964.

同被引文献49

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部