期刊文献+

两端铰支输流管道固有频率的研究 被引量:3

Research on natural frequency of pinned-pinned pipe conveying fluid
下载PDF
导出
摘要 利用复模态分析方法和Galerk in方法研究了两端铰支输流管横向振动对其固有频率的影响。通过数值方法绘出系统的前两阶固有频率随流体速度的变化情况。利用数值算例分析了复模态分析方法、二阶Galerk in截断和四阶Galerk in截断方法对固有频率的影响。 The transverse vibrations of is investigated by the complex mode method and Galerkin method. The numerical examples show the first two natural frequencies affected by the fluid flowing speed. The influence of the complex mode method, two order Galerkin method and four order Galerkin method to the natural frequencies are also simulated.
出处 《沈阳航空工业学院学报》 2008年第5期5-8,共4页 Journal of Shenyang Institute of Aeronautical Engineering
关键词 复模态分析方法 GALERKIN方法 固有频率 输流管道 complex mode method Galerkin method natural frequency pipe conveying fluid
  • 相关文献

参考文献5

二级参考文献8

  • 1Paidoussis M P. Fluid-structure instabilities[ M ]. V. 1, San Diego: Academic Press, 1998.
  • 2Paidoussis M P, Li G X, Rand R H. Chaotic motions of a constrained pipe conveying fluid [ J ]. J Applied Mechanics,1991, 58 : 559 - 565.
  • 3Jin J D. Stability and chaotic motions of a restrained pipe conveying fluid[J]. J Sound and Vibration, 1997, 208: 427-439.
  • 4Holmes P J. Pipes supported at both ends cannot flutter[J]. J Applied Mechanics, 1978, 45 : 619 - 622.
  • 5Ariaramam S T, Namachchivaya N S. Dynamic stability of pipes conveying pulsating fluid [J ]. J Sound and Vibration,1986,107:215 - 230.
  • 6Namachchivaya N S, et al. Non-linear dynamics of supported pipe conveying pulsating fluid. 1. Subharmonic resonance and 2. Combination resonance [J ]. International Journal of Nonlinear Mechanics, 1989, 24 : 185 - 208.
  • 7Semler C, Li G X, Paidoussis M P. The non-linear equations of motion of pipes conveyingfluid[J]. J Sound and Vibration,1994, 169(5): 577-599.
  • 8金基铎,林影,邹光胜.悬臂输流管的颤振和浑沌运动分析[J].振动工程学报,1997,10(3):314-320. 被引量:14

共引文献87

同被引文献17

  • 1金基铎,邹光胜,闻邦椿.参-强激励联合作用下输流管的分岔和混沌行为研究[J].应用力学学报,2005,22(1):111-113. 被引量:9
  • 2陈振藩,白鸿柏.密频内共振的机理[J].振动工程学报,1995,8(3):226-234. 被引量:2
  • 3徐鉴,杨前彪.流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ)[J].应用数学和力学,2006,27(7):819-824. 被引量:20
  • 4McDonald,R.,Namachchivaya,N.Sri.,2005.Pipes conveying pulsating fluid near a 0:1 resonance; Local bifurcation.Journal of Fluids and Structures,2005,21.629 -664.
  • 5McDonald,R.,Murdock,J.A.,Namachchivaya,N.Sri.,1999.Non-autonomous normal forms for Hamilton systems.Journal of Dynamics and stability of Systems,1999,14.357 -384.
  • 6Nagata,W.,Namachchivaya,N.Sri.,1998.Bifurcation in gyroscopic systems with an application to rotating shafts.Proceedings of the Royal Society:Series A 454,543 -585.
  • 7张琪昌,王洪礼,竺致文,等.分岔与混沌理论及应用[M].天津:天津大学出版社,2004.
  • 8McDonald R, Namachchivaya N S. Pipes conveying pulsating fluid near a 0 : 1 resonance : Local bifurcation [ J]. Journal of Fluids and Structures, 2005,21. 629 - 664.
  • 9Ryu S U, Sugiyama Y, Ryu B J. Eigenvalue branches and modes for flutter of cantileverd pipes conveying fluid[ J]. Computers and Structures, 2002, 80 (14/15) : 1231 - 1241.
  • 10Seyranian A P. Collision of eigenvalues in linear oscillatory systems [ J ]. PMM - Journal of Applied Mathematics and Mechanics, 1994, 58 (5) :805 -813.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部