期刊文献+

基于独立分量分析的航空发动机振动信号盲源分离 被引量:1

A blind source separation of aero-engine vibration signals on independent component analysis
下载PDF
导出
摘要 阐述了基于峭度的盲源分离开关算法,对仿真信号进行分离,验证了该算法的可行性。并将该算法与FFT分离法结合,对某型双转子航空发动机高、低压转子实测振动信号进行了盲源分离实践,取得了很好的分离效果,从而为双转子发动机振动监测与故障诊断提供了一种可行的信号处理方法。 A blind source separation algorithm based on kurtosis was expounded in this paper. The method was adopted to separate imitating signals, in order to validate the correctness and feasibility of arithmetic. In combination with FFT separation, the blind source separation of the measured vibration signals which come from a high - pressure rotor and a low - pressure rotor of a twin - spool engine. It presents blind source separation techniques, which are proved that the separation is a feasible and effective signal processing methods for twin - spool engines' fault diagnosis and vibration monitoring.
出处 《沈阳航空工业学院学报》 2008年第5期20-23,共4页 Journal of Shenyang Institute of Aeronautical Engineering
关键词 航空发动机 盲源分离 峭度 FFT方法 aero - engine blind source separation kurtosis FFT separation
  • 相关文献

参考文献7

  • 1宋晓萍,廖明夫.双转子航空发动机振动信号的分离测试技术[J].机械科学与技术,2006,25(4):487-490. 被引量:9
  • 2张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 3李舜酩.机械振动信号盲源分离的时域方法[J].应用力学学报,2005,22(4):579-584. 被引量:19
  • 4航空发动机设计手册总编委会.航空发动机设计手册[M].航空工业出版社.2000.
  • 5S I Amari, A Cichoki, H Yang A new learning algorithm for Blind Signal Separation[ J]. Advances in Neural information Processing System. 2003 (8) : 757 - 763.
  • 6Cichocki A and Amari S. Adaptive Blind signal and Image Processing - Learning Algorithms and Applications [ M ]. Wiley J. & Sons ,2002.
  • 7Wenwu Wang,Joathon A. Chambers and Saeid Sanei. A joint diagonasis method for convolutive blind separation of non - stationary sources in the frequency domain. ICA 2006. 939 -944.

二级参考文献71

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 3[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 4[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 5[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 6[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 7[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 8[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 9[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 10[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.

共引文献231

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部