期刊文献+

分析力学在广义相对论中的应用 被引量:2

The Application of Analytic Mechanics to General Relativity
下载PDF
导出
摘要 将分析力学中的Hamilton变分原理运用到广义相对论中,通过构造引力场的Lagrange函数,导出大尺度时空中的引力场所满足的Lagrange运动方程,即Einstein引力场方程.进一步,将四维时空流形进行3+1分解,通过Legendre变换和Dirac约束分析,得到引力场方程的Hamilton形式,即引力场演化方程和约束方程,从而能清晰地展现出引力场所受的约束条件和演化规律. The Homihonian variational principle is applied into general relativity in this paper. The Lagrange equations of motion satisfied by gravitational field in the large scale spacetime, i.e. , Einstein field equations for gravitation, can be derived by constructing the Lagrange function of gravitational field. Furthermore, the Hamihonian formulation of field equations for gravitation, i. e. , evolution equations and constraint equations for gravitational field, can be also obtained by Legendre transformation and Dirac constraint analysis after the 3 + 1 decomposion of 4 - dimensional spacetime. Hence the constraint conditions and evolution laws satisfied by gravitational field can be evidently shown.
出处 《辽宁大学学报(自然科学版)》 CAS 2008年第4期316-320,共5页 Journal of Liaoning University:Natural Sciences Edition
基金 国家自然科学基金(10475036) 辽宁省教育厅高等学校科研基金(05L215 2007T087)
关键词 分析力学 变分原理 引力场方程 analytic mechanics variational principle field equations for gravitation
  • 相关文献

参考文献13

  • 1陈斌.分析动力学[M].北京:北京大学出版社,1987.1-25.
  • 2曾谨言.量子力学[M].北京:科学教育出版社,1984,5..
  • 3Peskin Michael E, Schroeder Daniel V. An Introduction to Quantum Field Theory [ M ]. New York: Westview Press, 1995,15 - 34.
  • 4梁灿斌.微分几何入门与广义相对论[M].北京:北京师范大学出版社,2000,465-505.
  • 5Carmeli M, Classical Field. General Relativity and Gauge Theory [ M ]. New York: A Wiley - Interseience Publication, 1992,93 - 113.
  • 6Wald R M. General Relativity[M]. Chlcago:University of Chicaga Press, 1984,450-471.
  • 7Amowitt R, Deser S, Misner C W. In Gravitation: An Introduction to Current Research [ M ]. New York: A Wiley - Intersclence Publication, 1962,1 - 30.
  • 8Romano J D. Geometrodynamics vs Connection Dynamics [ J ]. General Relativity and Gravitation, 1993, 25 : 795.
  • 9Dirac P A M. Lectures on Quantum Mechanics [ M ]. New York: Belfer Grduate School of Science Yeshiva University press, 1984,10 - 25.
  • 10Wu Yabo. Parametric ( Anti - )Setf - Dual Variables and a Related Parametric Yang - Mills - Like Action in Four- dimensional Gravity[ J ]. International Journal of Theoretical Physics,1998,31:2127.

共引文献7

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部