期刊文献+

粒子群优化算法中惯性权重的研究 被引量:6

Research on Inertia Weight in Particle Swarm Optimization
下载PDF
导出
摘要 惯性权重是粒子群优化算法中的关键参数,文章对惯性参数进行了系统的研究,在此基础上,分析了固定权重,典型的线性递减惯性权重,步长较小的线性递减惯性权重对收敛性能的影响。通过对4个测试函数的仿真实验,验证了它们各自的全局收敛性和收敛速度,说明了惯性权重在粒子群优化算法中有很大的自由度。 The inertia weight is the crucial parameter of the particle swarm optimization (PSO). Systemic research is done on inertia weight in the paper, based on this, we analysis the impact of performance of the convergence based on regular weight, typical linear reduced inertia weight arid linear reduced inertia weight with small length of stride. The results on four benchmark functions proved that their own global convergence and convergence speed. It illustrates that the selection of inertia weight has more freedom in particle swarm optimization.
作者 张龙 王华奎
出处 《机械管理开发》 2008年第6期6-7,共2页 Mechanical Management and Development
关键词 粒子群优化算法(PSO) 惯性权重 收敛性 Particle swarm optimization (PSO) Inertia weight Convergence
  • 相关文献

参考文献3

  • 1Kennedy J, Eberhart R. Particle Swarm Optimization[J]. IEEE on Neural Networks, 1995.1942-1948.
  • 2Trelea I. The particle swarm optimization algorithm[J].Information Processing Letters, 2003,85(6):317-325.
  • 3Eberhart R, Shi Y. Comparing Inertia Weigthts and Constriction Factors in Particle Swarm Optimization[J]. IEEE Service Center, 2000: 4-88.

同被引文献59

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部