摘要
考虑三阶非线性两点边值问题-u′″(t)=f(t,u(t)),t∈[0,1],u(0)=u′(0)=u′(1)=0解的存在性,其中f(t,u):[0,1]×R→R为连续函数.利用新的极大值原理以及上下解的单调迭代方法推广了已有的解的存在性结果.并用一实例说明其应用.
In this paper we consider the existence of solutions for the third-order nonlinear two-point boundary value problem {-u′″(t)=f(t,u(t)),t∈[0,1],u(0)=u′(0)=u′(1)=0 where f(t,u):[0,1]×R→R is continuous. A new maximum principle and the upper and lower solution method are employed to extend some known existence results. Besides,it provides an example to illustrate the application of the main result.
出处
《甘肃联合大学学报(自然科学版)》
2008年第6期15-17,共3页
Journal of Gansu Lianhe University :Natural Sciences
关键词
三阶边值问题
极大值原理
上下解
单调迭代
third-order boundary value problem
maximum principle
upper and lower solution
monotone iterative method