摘要
设M是S^(n+p)中n维紧致极小子流形,利用M的Gauss映照,本文获得了一个关于M的第二基本形式长度的平方及Ricci曲率下确界的积分公式,由它,给出了M是全测地子流形的一个特征。
An integral formula concerning the square of length of the second fundamental form of M and the infimum of Ricci curvatures is obtained by letting M be an n-dimensional compact minimal submanifold in a unit sphere Sn+p and by employing the Gauss map of M, a formula which defines M as a totally geodesic submanifold
关键词
球空间
极小
子流形
积分方程
minimal
submanifolds
gauss curvature
mapping (mathematics)
harmonic form
integral equation/totally geodesic