期刊文献+

Slater条件、BCQ条件、强CHIP性质和限制域最佳逼近的特征

Slater Condition,BCQ Condition,Strong-CHIP and Characterization of the Best Approximation with Restrictions
下载PDF
导出
摘要 针对广义限制域的最佳逼近问题,在允许有有限个节点的情况下,运用优化理论中的Slate条件、BCQ条件、强CHIP性质的定义,刻划了Slate条件、BCQ条件、强CHIP性质和最佳逼近的特征之间的关系. The problem of the best approximation with generalized restrictions is investigated. Under the assumption that there are finite intersection points, making use of Slater Condition, BCQ condition and Strong-CHIP from optimization theory, the paper presents the relationship of the Slater Condition, the BCQ condition, the Strong-CHIP and the characterization of the best approximation with generalized restrictions.
出处 《江南大学学报(自然科学版)》 CAS 2008年第5期619-622,共4页 Joural of Jiangnan University (Natural Science Edition) 
基金 湖南省教育厅科研基金项目(05C143)
关键词 最佳逼近 Slate条件 BCQ条件 强CHIP 特征 best approximation slater condition BCQ condition strong-CHIP characterization
  • 相关文献

参考文献12

  • 1SHI Y G. The iimits of a chebyshev-type theory of restricted range approximation [ J]. J Approx Theory, 1988, 53: 41-53.
  • 2Taylor G D. Approximation by functions having restricted ranges III [ J]. J Math Anal Appl, 1969, 27: 241-248.
  • 3Taylor G D. Approximation by functions having restricted ranges: equality case [J]. J Numer Math, 1969, 14: 71-78.
  • 4KROO A, Schmidt D. A Haar-type theory of best uniform approximation constraints [J]. Acta Math Hung, 1991, 58: 351-374.
  • 5FANG D H, LI C, YANG W X. Strong-CHIP and characterization of the best approximation with generalized restrictions [ J ]. Act Math Sinica, 2004, 6: 1115-1122.
  • 6Deutach F, LI W, Ward J. A dual approach to constrained interpolation from a convex subset of Hilbert spaces [ J ]. J Approx Theory, 1997, 90:385 A.A.A..
  • 7LI C, Ng K F. On constraint qualification for an infinite system of convex inequalities in a Banach space [ J ]. SIAM J Optimization, 2005, 15(2): 488-512.
  • 8Deutach F, LI W, Ward J. Best approximation from the intersection of a closed convex set and a polyhedron in hilbert spaces, weak Slater condition, and the strong conical hull intersection property[ J]. SIAM J Optimization, 1999, 10( 1 ) : 152-268.
  • 9LI W, Chandal N, Singer I. Constraint qualification for semi-infinite systems of convex inequalities [ J ]. SIAM J Optimization, 2000, 11(1): 31-52.
  • 10Singer I. Best Approximation by Elements of Linear Subspaces in Linear Spaces [ M]. New York: Spring-Verleg, 1974.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部