摘要
For a symmetric sign pattern S1 the inertia set of S is defined to be the set of all ordered triples si(S) = {i(A) : A = A^T ∈ Q(S)} Consider the n × n sign pattern Sn, where Sn is the pattern with zero entry (i,j) for 1 ≤ i = j ≤ n or|i -j|=n- 1 and positive entry otherwise. In this paper, it is proved that si(Sn) = {(n1, n2, n - n1 - n2)|n1≥ 1 and n2 ≥ 2} for n ≥ 4.
For a symmetric sign pattern S1 the inertia set of S is defined to be the set of all ordered triples si(S) = {i(A) : A = A^T ∈ Q(S)} Consider the n × n sign pattern Sn, where Sn is the pattern with zero entry (i,j) for 1 ≤ i = j ≤ n or|i -j|=n- 1 and positive entry otherwise. In this paper, it is proved that si(Sn) = {(n1, n2, n - n1 - n2)|n1≥ 1 and n2 ≥ 2} for n ≥ 4.
基金
The NSF(10871188)of China
the NSF(KB2007030)of Jiangsu Province
the NSF(07KJD110702)of University In Jiangsu Province.