期刊文献+

Multiple Positive Periodic Solutions for Functional Differential Equations with Infinite Delay 被引量:1

Multiple Positive Periodic Solutions for Functional Differential Equations with Infinite Delay
下载PDF
导出
摘要 In this paper, we investigate the existence of multiple positive periodic solutions for functional differential equations with infinite delay by applying the Krasnoselskii fixed point theorem for cone map and the Leggett-Williams fixed point theorem. In this paper, we investigate the existence of multiple positive periodic solutions for functional differential equations with infinite delay by applying the Krasnoselskii fixed point theorem for cone map and the Leggett-Williams fixed point theorem.
出处 《Northeastern Mathematical Journal》 CSCD 2008年第4期319-328,共10页 东北数学(英文版)
基金 The NSF(10471075)of China the NSF(Y2006A04)of Shandong Province.
关键词 positive periodic solution functional differential equation fixed point theorem for cone map positive periodic solution, functional differential equation, fixed point theorem for cone map
  • 相关文献

参考文献11

  • 1Bing LiuDepartment of Mathematics, Huazhong University of Science and Technology, Wuhan 430074, China.Positive Periodic Solution for a Nonautonomous Delay Differential Equation[J].Acta Mathematicae Applicatae Sinica,2003,19(2):307-316. 被引量:8
  • 2Peng,S.G.Positive periodic solutions for functional differential equations with infinite delay[].Chinese AnnMathA.2004
  • 3Huang Qichang.On the existence of periodic solutions for functional differential equations with infinite delays[].Science in China.1984
  • 4Peng S G,Zhu S M.Periodic Solutions of Functional Differential Equations with Infinite Delay[].Chinese Annals of Mathematatics.2002
  • 5B. Liu.Positive periodic solutions for a nonautonomous delay differential equation[].Acta Math Appl Sinica English Series.2003
  • 6Daqing Jiang,Junjie Wei.Existence of positive periodic solutions for Volterra integro-differential equations.Acta Math. Sci. Ser[].B Engl Ed.2001
  • 7Kuang Y.Delay differential equations with applications in population dynamical system[]..1993
  • 8Guo D,Lakshmikantham V.Nonlinear Problems in Abstract Cones[]..1988
  • 9K. Wang and Q. H. Huang.Ch Space, Boundness and periodic solutions of functional differential equations with infinite delay[].Science in China.1987
  • 10Nieto J J.Nonlinear second order periodic boundary value problems[].Journal of Mathematical Analysis and Applications.1988

二级参考文献13

  • 1Chow, S.N. Existence of periodic solutions of autonomous functional differential equations. J. Diff. Eqs.,15:350-375 (1974).
  • 2Deimling, K. Nonlinear functional analysis. Springer, New York, 1985.
  • 3Gopalsamy, K., He, X., Wen, L. On a periodic neutral logistic equation. Glasgow Math. J., 33:281-286(1991).
  • 4Gopalsamy, K., Zhang, B.G. On a neutral delay logistiic equation. Dynamics Stability systems, 2:183-195(1988).
  • 5Hale, J.K. Theory of functional differential equations. Springer, New York, 1977.
  • 6Jiang, D.Q., Wei, J.J. The existence of positive periodic solution of nonautonomous delay differential equation. Ann. of Math. (Series A), 20:715-720 (1999) (in Chinese).
  • 7Krasnoselskii, M.A. Positive solution of operator equations. Noordhoff, Gronignen, 1964.
  • 8Kuang, Y. Delay differential equation with applications in population dynamics. Academic Press, Boston,1993.
  • 9Li Y K Periodic solutions of a periodic neutral delav eauation. J. Math. Anal. Appl., 214:11-21 (1997).
  • 10Mallet, J., Nussbaum, R. Global continuation and asymptotic behavior for periodic solutions of a differential delay equation. Ann. di Math. Pured. Appl., 145:33-128 (1986).

共引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部