期刊文献+

Log-ω-hyponormal Operators

Log-ω-hyponormal Operators
下载PDF
导出
摘要 Let T be an operator on a separable Hilbert space H and T = U|T| be the polar decomposition. T is said to be log-ω-hyponormal if log |~T| ≥ log|T|≥ log |~T^*|. In this paper we prove that the point spectrum of T is equal to its joint point spectrum if T is log-ω-hyponormal. We also prove that a log-ω-hyponormal operator is normaloid, i.e., r(T) =||T||. Finally, we obtain Putnam's theorem for log-ω-hyponormal operators. Let T be an operator on a separable Hilbert space H and T = U|T| be the polar decomposition. T is said to be log-ω-hyponormal if log |~T| ≥ log|T|≥ log |~T^*|. In this paper we prove that the point spectrum of T is equal to its joint point spectrum if T is log-ω-hyponormal. We also prove that a log-ω-hyponormal operator is normaloid, i.e., r(T) =||T||. Finally, we obtain Putnam's theorem for log-ω-hyponormal operators.
作者 王斌 张敏
出处 《Northeastern Mathematical Journal》 CSCD 2008年第4期363-372,共10页 东北数学(英文版)
基金 The NSF(10371049)of China the SHFDPHE(20050183002)of China.
关键词 log-ω-hyponormal SPECTRUM normaloid nontrivial invariant subspace log-ω-hyponormal, spectrum, normaloid, nontrivial invariant subspace
  • 相关文献

参考文献16

  • 1Il Bong Jung,Eungil Ko,Carl Pearcy.Aluthge transforms of operators[J].Integral Equations and Operator Theory.2000(4)
  • 2Ariyadasa Aluthge,Derming Wang.ω-Hyponormal operators[J].Integral Equations and Operator Theory.2000(1)
  • 3K?tar? Tanahashi.On log-hyponormal operators[J].Integral Equations and Operator Theory.1999(3)
  • 4S. M. Patel.A note onp-hyponormal operators for 0<p<1[J].Integral Equations and Operator Theory.1995(4)
  • 5Ariyadasa Aluthge.Onp-hyponormal operators for 0<p<1[J].Integral Equations and Operator Theory.1990(3)
  • 6T. Ando.On some operator inequalities[J].Mathematische Annalen.1987(1)
  • 7Patel,S.M.A note on p-hyponormal operators for 0<p<1[].Journal of Integral Equations.1995
  • 8Fujii,M.,Izumino,S.,and Nakamoto,R.Class of operators determined by the Heinz-Kato- Furuta inequality and the H (?)lder-Mclurthy inequality[].Nihonkai MathJ.1994
  • 9Aluthge,A.On p-hyponormal operator for 0<p<1[].Integral Equations and Operator Theory.1990
  • 10K. Lower.Uber monotone matrix function[].Mathematische Zeitschrift.1934

二级参考文献12

  • 1ALUTHGE A. Some generalized theorems on p-hyponormal operators[J]. Integr Equ Oper Th, 1996, 24:497-501.
  • 2FUJII M, FURUTA T, KAMEI E. Furuta's inequality and its application to Ando's theorem[J]. Linear Algebra Appl, 1993, 179: 161-169.
  • 3ALUTHGE A, WANG D. An operator inequality which implies paranormality[J]. Math Inequal Appl, 1999,2: 113-119.
  • 4BERBERIAN S K. Approximate proper vectors[J]. Proc Amer Math Soc, 1962, 33: 111-114.
  • 5Cho M, HURUYA T. p-hyponormal operators for 0 < p < 1/2 [J]. Coment Math, 1993, 33: 23-29.
  • 6XIA D. Spectral Theory of Hyponormal Operators[M]. Boston: Birkhauser Verlag, 1983.
  • 7YAMAZAKI T. Characterizations of log A ≥ log B and normal operators via Heinz inequality[J]. Integr Zqu Oper Th, 2002, 43: 237-247.
  • 8ALUTHGE A, WANG D. w-hyponormal operators[J]. Integr Equ Oper Th, 2000, 36: 1-10.
  • 9ALUTHGE A, On p-hyponormal operators[J]. Integr Equ Oper Th, 1990, 13: 307-315.
  • 10YANG Chang-sen, LI Haiying. A note on p - w-hyponormal operators(to appear Acta Mathematica Sina).

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部