摘要
Let T be an operator on a separable Hilbert space H and T = U|T| be the polar decomposition. T is said to be log-ω-hyponormal if log |~T| ≥ log|T|≥ log |~T^*|. In this paper we prove that the point spectrum of T is equal to its joint point spectrum if T is log-ω-hyponormal. We also prove that a log-ω-hyponormal operator is normaloid, i.e., r(T) =||T||. Finally, we obtain Putnam's theorem for log-ω-hyponormal operators.
Let T be an operator on a separable Hilbert space H and T = U|T| be the polar decomposition. T is said to be log-ω-hyponormal if log |~T| ≥ log|T|≥ log |~T^*|. In this paper we prove that the point spectrum of T is equal to its joint point spectrum if T is log-ω-hyponormal. We also prove that a log-ω-hyponormal operator is normaloid, i.e., r(T) =||T||. Finally, we obtain Putnam's theorem for log-ω-hyponormal operators.
基金
The NSF(10371049)of China
the SHFDPHE(20050183002)of China.