期刊文献+

几种改进PSO算法在带时间窗车辆路径问题中的比较与分析 被引量:4

The Comparison and Analysis of Several Improved PSO Algorithms in Solving the Vehicle Routing Problem with Time Window
下载PDF
导出
摘要 车辆路径问题属于完全NP问题,也是运筹学中的热点问题。虽然目前有很多人进行研究,但搜索效率和达优率较低,而且计算所得平均费用偏高。鉴于此,本文分别用二阶振荡PSO、随机惯性权重PSO、带自变异算子PSO、模拟退火PSO求解带时间窗车辆路径问题。通过仿真实验给出了这四种改进PSO算法在求解该问题时的不同;同时,与文献[1]中的遗传算法、标准PSO算法求解该问题进行了比较并得出结论:本文中用到的四种改进PSO算法都能更有效地降低成本,缩短运行时间,提高达优率,而且随机惯性权重PSO表现尤为突出。 The Vehicle Routing Problem is a NP complete problem and is also a hot topic in the operational research field. Many people do research on it, but searching effiency and the rate of success are low and the cost is high. In view of this,the paper adopts the second-order oscillating particle swarm optimization, particle swarm optimization-randomly varying inertia weight,particle swarm optimization mutation operator, and simulated annealing particle swarm optimization to solve the vehicle routing problem with time window. We list the differences when solving the problem through simulation experiments and compare the four algorithms with the genetic algorithm, standard particle swarm optimization used in literature[14]. We can conclude that all the four algorithms used in this article can decrease the cost, shorten the running time, and improve the rate of success effectively,and particle swarm optimization-randomly varying inertia weight is the best.
作者 张兰 雷秀娟
出处 《计算机工程与科学》 CSCD 2008年第12期55-59,共5页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60773224)
关键词 车辆路径问题 改进粒子群优化算法 随机惯性权重 vehicle routing problem improved particle swarm optimization randomly varying inertia weight
  • 相关文献

参考文献14

  • 1郝晋,石立宝,周家启.求解复杂TSP问题的随机扰动蚁群算法[J].系统工程理论与实践,2002,22(9):88-91. 被引量:105
  • 2Dantzig G, Ramser J. The Truck Dispatching Problem[J]. Management Science, 1959,6(1):80-91.
  • 3Hoong C L, Melvyn S, Kwong M T. Vehicle Routing Problem with Time Windows and a Limited Number of Vehicles [J]. European Journal of Operational Research, 2003, 148: 559-569.
  • 4Kennedy J, Eberhart R C. Particle Swarm Optimization [C]//Proc of the IEEE Int'l Conf on Neural Networks, 1995: 1942-1948.
  • 5高尚,杨静宇,吴小俊,刘同明.基于模拟退火算法思想的粒子群优化算法[J].计算机应用与软件,2005,22(1):103-104. 被引量:51
  • 6杨亚平,曾建潮.微粒群与单纯形相结合的混合优化[C]//2005年中国模糊逻辑与计算智能联合学术会议论文集.2005,804—807.
  • 7van den Bergh F. An Analysis of Particle Swarm Optimizer [C]//Proc of the IEEE Int'l Conf on Evolutionary Computation, 1998: 69-73.
  • 8谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 9Eberhart R C, Shi Y. Particle Swarm Optimization: Developments, Applications and Resources[C]//Proc of the Congress on Evolutionary Computation, 2001 : 81-86.
  • 10Clerc M,Kennedy J. The Particle Swarm-Explosion, Stability,and Convergence in a Multi-Dimensional Complex Space [J]. IEEE Trans on Evolutionary Computation, 2002, 6 (1): 58-73.

二级参考文献50

  • 1李宁,孙德宝,岑翼刚,邹彤.带变异算子的粒子群优化算法[J].计算机工程与应用,2004,40(17):12-14. 被引量:60
  • 2[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 3[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 4[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 5[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 6[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 7[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 8[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 9[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 10[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.

共引文献573

同被引文献37

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部