期刊文献+

基于最小二乘支持向量机的特征增量学习算法 被引量:1

An Incremental Feature Learning Algorithm for the Least Square Support Vector Machine
下载PDF
导出
摘要 本文针对传统的增量学习算法无法处理后采集到的样本中含有新增特征的问题,设计适应样本特征维数增加的训练算法。在基于最小二乘支持向量机的基础上,提出了特征增量学习算法。该算法充分利用先前训练得到的分类器的结构参数,仅对新增特征采用最小二乘支持向量机进行学习。实验结果表明,该算法能够在保证分类精度的同时,有效地提高训练速度并降低存储空间。 In order to tackle with the incremental learning problems with new features, an incremental feature learning algorithm for the least square support vector machine is proposed in this paper. In this algorithm, using historic structural parameters trained from the already existing features, the algorithm only trains the new features with the least square support vector machine Experiments show that this algorithm has two outstanding properties. First, different kernel functions can be used for the already existing features and the new features according to the distribution of samples. Second, the training time and the memory space can be reduced. Some UCI datasets are used to demonstrate the less training time or the better performance of this algorithm than the standard least square support vector machine.
出处 《计算机工程与科学》 CSCD 2008年第12期68-71,共4页 Computer Engineering & Science
关键词 支持向量机 最小二乘支持向量机 特征维数增量学习 support vector machine least square support vector machine feature dimension incremental learning
  • 相关文献

参考文献14

  • 1Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 2Vapnik V. Statistical Learning Theory[M]. New York:John Wiley, 1998.
  • 3Christopher J, Burges C. A Tutorial on Support Vector Machines for Pattern Recognition [J]. Knowledge Discoverand Data Mining, 1998,2(2) :235-244.
  • 4Syed N, Liu H, Sung K. Incremental Learning with Support Vector Mechines [C]//Proc of IJCAI'99,1999: 352-356.
  • 5Gauwenbergbs G, Poggio T. Incremental and Decremental Support Vector Machine[J]. Machine Learning, 2001, 44 (13) : 409-415.
  • 6孔锐,张冰.一种快速支持向量机增量学习算法[J].控制与决策,2005,20(10):1129-1132. 被引量:31
  • 7萧嵘,王继成,孙正兴,张福炎.一种SVM增量学习算法α-ISVM[J].软件学报,2001,12(12):1818-1824. 被引量:85
  • 8Suykens J A K, Vandewalle J. Least Squares Support Vector Machine Classifiers[J]. Neural Process Letter, 1999, 9 (3) :293-300.
  • 9Xiao R,Wang J,Zhang F. An Approach to Incremental SVM Learning Algorithm[C]//Proc of ICTAI'00,2000: 268-273.
  • 10Shilton A, Palaniswami M. Incremental Training of Support Vector Machines[J]. IEEE Trans on Neural Networks, 2005,16(1) : 114-131.

二级参考文献11

  • 1曾文华,马健.支持向量机增量学习的算法与应用[J].计算机集成制造系统-CIMS,2003,9(z1):144-148. 被引量:27
  • 2Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer Verlag, 1995.
  • 3Muller K R, Mika S, Ratsch G, et al. An Introduction to Kernel-based Learning Algorithms[J]. IEEE Transon Neural Networks,2001,12(2) : 181-201.
  • 4Burges C J C. A tutorial on Support Vector Machines for Pattern Recognition[J]. Knowledge Discovery and Data Mining, 1998,2(2) :121-167.
  • 5Gert C, Tomaso P. Incremental and Decremental Support Vector Machine Learning [A]. Advances in Neural Information Processing Systems (NIPS * 2000)[C]. Cambridge MA :MIT Press, 2001,13.
  • 6Schoelkopf B. The Kernel Trick for Distances [R].MSR-TR-2000-51 ,Microsoft Research, 2000.
  • 7Smola A J. Learning with Kernels[D]. Berlin:Technische Universitaet, 1998.
  • 8Platt J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization [A]. Advancesin Kernel Methods - Support Vector Learning [C].Cambridge, MA: MIT Press ,1999 :185-208.
  • 9Christopher J.C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition[J] 1998,Data Mining and Knowledge Discovery(2):121~167
  • 10萧嵘,王继成,孙正兴,张福炎.一种SVM增量学习算法α-ISVM[J].软件学报,2001,12(12):1818-1824. 被引量:85

共引文献102

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部