期刊文献+

限制树宽的图的最小标记生成数算法

The Minimum Label Spanning Tree Algorithm for the Graph of Bounded Treewidth
下载PDF
导出
摘要 本文研究了图的最小标记生成树问题。首先介绍在一般图上基于搜索树的最小标记生成树的算法;然后考虑了限制树宽的图,得到了效率更高的算法。该算法在树宽为常数的情况下,时间复杂度关于图的顶点个数为多项式,从而也证明了最小标记生成树在限制树宽的图上属于确定参数可解问题。 This paper studies the minimal label spanning tree problem of graphs. First we introduce this problem on the general graphs. Then we focus on the minimal label spanning tree problem of the graphs of bounded treewidth. In this paper, we get an algorithm which is polynomial on the size of graph, showing that this problem is fixed-parameter tractable.
出处 《计算机工程与科学》 CSCD 2008年第12期72-74,共3页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60573025) 上海重点学科建设基金资助项目(B114) The Robert Bosch Foundation,Ger-many,Science Bridge China
关键词 最小标记生成树 搜索树 限制树宽 确定参数可解 minimum label spanning tree search tree bounded treewidth fixed-parameter tractablility
  • 相关文献

参考文献7

  • 1Chang R-S, Leu S-J. The Inimum Labeling Spanning Tree [J]. Information Processing Letters, 1997,63: 277-282.
  • 2Krumke S O, Wirth H-C. On the Minimum Label Spanning Tree Problem[J]. Information Processing Letters, 1998, 66:81-85.
  • 3Femau H. Parameterized Algorithmics: A Graph-Theoretic Approach[Z]. Habilitationsschrift, Whilhelm-Schickard-Institut fur Infromatik, Unversitat Tubingen, 2005.
  • 4Bodlaender H. Discovering Treewidth[C]// Proc of SOFSEM'05,2005:1-16.
  • 5Kleinberg J, Tardos E. Algorithm Design[M]. Peking: Tsinghua University Press, 2006.
  • 6Kloks T. Treewidth. Computations and Approximations[M]//LNCS 842,1994.
  • 7Bruggemann T, Monnot J, Woeginger G J. Local Search for the Minimum Label Spanning Tree Problem with Bounded Color Classes[J]. Operations Research Letters, 2003, 31 (1): 195-201.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部