期刊文献+

Hermite-Fejér插值在一重积分Wiener空间下的平均误差 被引量:2

Average error of Hermite-Fejér interpolation on the 1-fold integrated Wiener space
下载PDF
导出
摘要 在L2-范数下讨论基于第二类Chebyshev多项式零点的Hermite-Fejr插值多项式列在一重积分Wiener空间下的平均误差,得到了相应量的弱渐近阶. In the L2-norm the average error of Hermite-Fejér interpolation sequence based on the Chebyshev nodes of the second kind on the 1-fold integrated Wiener space is discussed, and the weakly asymptotically order is determined.
作者 杜英芳
出处 《天津师范大学学报(自然科学版)》 CAS 2008年第4期34-36,共3页 Journal of Tianjin Normal University:Natural Science Edition
关键词 平均误差 CHEBYSHEV多项式 HERMITE-FEJÉR插值 L2-范数 一重积分Wiener空间 average error Chebyshev polynomials Hermite-Fejér interpolation L2-norm 1-fold integrated Wiener space
  • 相关文献

参考文献4

  • 1Klaus Ritter. Average-case analysis of numerical problems[M]. Berlin: Springer-Verlag, 2000.
  • 2Bojanie R, Prasad J, Saxena R B. An upper bound for the rate of convergence of the Hermite-Fejer process on the extended Tchebycheff nodes of the second kind[J]. J Approx Theory, 1979, 26: 195 - 203.
  • 3许贵桥.Lagrange插值和Hermite-Fejér插值在Wiener空间下的平均误差[J].数学学报(中文版),2007,50(6):1281-1296. 被引量:12
  • 4马海腾.Bernstein等算子逼近函数及其导数的平均误差[D].天津:天津师范大学,2007.

二级参考文献9

  • 1Traub J. F., Wasilkowski G. W., Wozniakowski H., Information-Based complexity, New York: Academic Press, 1988.
  • 2Ritter K., Approximation and optimization on the wiener space, J. Complexity, 1990, 6: 337-364.
  • 3Hickernell F. J., Wozniakowski H., Integration and approximation in arbitrary dimensions, Adv. Comput. Math., 2000, 12: 25-58.
  • 4Kon M., Plaskota L., Information-based nonlinear approximation: an average case setting, J. Complexity, 2005, 21: 211-229.
  • 5Erdos P., Feldheim F., Sur le mode de convergence pour l'interpolation de Lagrange, C. R. Acad. Sci. Paris Ser. L Ma. th., 1936, 203: 913-915.
  • 6Fejer L., Uber interpolation, Gottinger Nachr, 1916: 66-91.
  • 7Fejer L., Lagrangesche interPolation und zugehorigen konjugierten punkte, Math. Ann., 1932, 106: 1-55.
  • 8Sun Y. S., Wang C. Y., Average error bounds of best approximation of continuous functions on the Wiener space, J. Complezity, 1995, 11: 74-104.
  • 9Karma A. K., Prasad J., An analogue of a problem of P. Eros and E. Feldheim on Lp convergence of interpolatory processes, J. Approx. Theory, 1989, 56: 225-240.

共引文献11

同被引文献10

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部