摘要
通过应用拓扑度的方法,给出了在一个周期环境下一类二维具多时滞的脉冲微分方程正周期解存在性的若干结论.主要利用Mawhin延拓定理和Arzela-Ascoli定理以及一些分析技巧考察了文中给定系统的正周期解的存在性.
By applying the continuation theorem of coincidence degree theory, the writers establish the existence of the positive periodic solutions of a class of two-dimensional impulsive differential equations with several delays. In this paper, we mainly discuss the existence of positive solution for one system on the basis of Theorem Mawhin and Arzela-Ascoli as well as some analysis technique.
出处
《合肥学院学报(自然科学版)》
2008年第4期13-17,22,共6页
Journal of Hefei University :Natural Sciences
基金
国家自然科学基金项目(10771001)
教育部科学技术研究重点基金项目(205068)
安徽大学创新团队基金项目资助
关键词
脉冲微分方程
正周期解
重合度理论
impulsive differential equation
positive periodic solutions
coincidence degree