期刊文献+

融合QPSO思想的多行为蚁群算法在QoS路由问题上的应用

Multi-behaved Ant Colony Algorithm in Combination with QPSO for Solving QoS Routing Problem
下载PDF
导出
摘要 在解决QoS(quality of service)单播路由问题上,针对蚁群算法缺点,提出了一种融合量子粒子群算法(QP-SO)思想的多行为蚁群算法.该算法采用QPSO作为前期搜索,根据各粒子历史最优值来初始化路径信息素浓度,后期利用多行为蚁群算法来优化路径.仿真结果表明:该算法寻优能力强,可靠性高,是解决QoS路由问题的有效方法. In allusion to the flaws of ant oolony algorithm, a multi-behaved ant colony algorithm in combination with QPSO was presented for solving the QoS unicast muting problem. Firstly it adopts QPSO algorithm to approach early stage searching, and then initializing the concentration of pheromone based on each particle's historical optimum value, thirdly it makes use of multi-behaved ant colony algorithm to optimize the path. The simulation results have demonstrated that this algorithm had strong optimization ability and high reliability. It's the effective algorithm in solving QoS routing problem.
作者 张凌 毛力
出处 《微电子学与计算机》 CSCD 北大核心 2008年第11期55-58,共4页 Microelectronics & Computer
关键词 QOS 量子粒子群 多行为 蚁群算法 单播路由 QoS Quantum-behaved Particle Swarm Optimization(QPSO) multi-behaved ant colony unieast routing
  • 相关文献

参考文献6

二级参考文献28

  • 1Wang Z,Crowcroft J.Quality of service for supporting multimedia applications[J].IEEE JSAC, 1996; (14) : 1228-1234.
  • 2Wu J J,Hwang R H,Liu H I.Multicast routing with multiple QoS constraints in ATM networks[J].Information Sciences,2000; (124) :29-57.
  • 3Haghighatab A T,Faezb K,Dehghan M et al.GA-Based heuristic algorithms for QoS based multicast routing[J].Knowledge-Based Systems, 2003 ; (16) : 305-312.
  • 4Wang Z,Shi B.Bandwidth-delay-constrained least-cost multicast routing based on heuristic genetic algorithm[J].Computer Communications,2001 ; (24) :685-692.
  • 5J Hakkinen, M Lagerholm, C Peterson et al.Sodrnberg, Local routing algorithms based on Potts Neural networks[J].IEEE Transactions on Neural Networks, 2000; 11 (4) : 970-977.
  • 6Zhang subin,Liu Zemin.A QoS routing algorithm based on ant algorithm[C].In:Proceedings of the 25th Annual IEEE Conference on Local Computer Networks(LCN'00),2000:574-579.
  • 7Kennedy J, Eberhart R.Particle Swarm Optimization[C].In : IEEE International Conference on Neural Networks ( Perth, Australia ) , IEEE Service Center, Piscataway, N J, 1995 ; IV: 1942-1948.
  • 8Kennedy J ,Eberhart R,A new optimizer using particle swarm theory[C], In:Proceeding sixth International Symposium on Micro Machine and Human Science IEEE service center,Nagoya,Japan,1995:39-43.
  • 9Salama H F,Reeves D S,Viniotis Y.Evaluation of multicast routing algorithms for real-time communication on high-speed networks[J]. IEEE JSAC, 1997; (15) :332-345.
  • 10Stutzle T,Hoos H H.MAX-MIN ant system and local search for the traveling salesman problem[C].IEEE Int'Conf.on Evolutionary Computation,Indianapolis,IEEE Press,1997:309

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部