期刊文献+

针对肺结节检测的肺实质CT图像分割 被引量:4

Automated Segmentation of Lung Parenchyma Designed for Detection of Lung Nodules in CT Scans
下载PDF
导出
摘要 目的:针对CT图像上肺结节的自动检测,开发并评价对全肺螺旋CT扫描中的肺实质进行自动分割的一种综合方法。方法:首先利用全局阈值对CT图像进行二值化,然后消除由于支气管、细支气管等低密度影和由于结节、血管等高密度影以及由检查床造成的条状伪影等噪声,最后对包含胸膜连接结节的图像利用数学形态学运算和图像凸包运算进行完善形成肺实质掩膜。结果:利用该方法对从LIDC数据库中所有包含结节的505张CT扫描片(来自69个病例)进行肺实质分割,正确率为95.4%。其中,包含胸膜连接结节的139张CT扫描片的正确分割率为94.2%。结论:本文提出的方法较好地完成了肺实质分割任务,为利用CT图像进行计算机辅助肺结节的检测打下了基础。 Objective: To develop and evaluate an integrated method that automatically segments lung parenchyma in whole lung helical CT scans for the automated detection of pulmonary nodules. Methods: An automated lung segmentation method involved three main stages. First, the whole lung CT scan was binarized using gray-level thresholding. Second, image noises due to streaking artifact, high-intensity structures such as nodules and vessels, and low-intensity structures such as bronchi were removed. Finally, morphological operations and convex image operations were applied to smooth the edge of lung parenchyma and lung mask was then generated. Results: The segmentation method was tested on LIDC database which consisted of 505 CT scans (from 69 patients) involving lung nodules. The method achieved 95.4% correctness. For 139 CT scans which involved nodules attached to the pleural surface, that rate was 94.2%. Conclusion: The developed method achieved practical performance for automated segmentation of lung parenchyma. The automated method will be helpful for computer-aided detection of lung nodules in CT scans.
出处 《中国医学物理学杂志》 CSCD 2008年第6期883-886,共4页 Chinese Journal of Medical Physics
基金 北京市优秀人才培养项目:20061D0501800251 首都医科大学基础临床科研合作基金:2007JL07 北京市属高等学校人才强教计划资助项目
关键词 图像分割 连通域 肺实质 CT 肺结节 image segmentation connected component lung parenchyma CT pulmonary nodules
  • 相关文献

参考文献4

  • 1Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins著.阮秋琦等译.数字图像处理(MATLAB版)[M].北京:电子IT业出版社,2006.252-364.
  • 2Samuel G. Armato III, Geoffrey McLennan, Michael F. McNitt-Gray, et al. Lung image database consortium -Developing a resource for the medical imaging research community [J]. Radiology, 2004, 232(3): 739-748.
  • 3National Cancer Institute National Cancer Imaging Archive: https:// imaging.nci.nih.gov/ncia.
  • 4Artdinet A. Enquobahrie, Anthony P. Reeves, David F. Yankelevitz, et al. Automated detection of small pulmonary nodules in Whole Lung CT Scans[J]. Academic Radiology, 2007, 14(5): 579-593.

同被引文献52

  • 1王德杭,汪家旺,于立燕,俞同福.肺结节检测算法研究[J].上海生物医学工程,2005,26(1):3-7. 被引量:4
  • 2李运,盛慧,赵荣华.Biolog微生物鉴定系统在菌种鉴定中的应用[J].酿酒科技,2005(7):84-85. 被引量:55
  • 3薛以锋,鲍旭东,马汉林,吴磊.基于CT图像的肺结节计算机辅助诊断系统[J].中国医学物理学杂志,2006,23(2):93-96. 被引量:15
  • 4任艳斐.直方图均衡化在图像处理中的应用[J].科技信息,2007(4):37-38. 被引量:37
  • 5高园园,吕庆文,郭宏,冯前进,陈武凡.一种新的肺结节检测算法[J].计算机工程与应用,2007,43(23):198-199. 被引量:6
  • 6Sluimer I,Schilham A,Mathias P,et al.Computer analysis of computed tomography scans of the lung[J].A Survey,IEEE Transactions on Medical Imaging,2006,25(4):385-405.
  • 7Al-Kadi OS,Watson D.Texture analysis of aggressive and nonaggressive lung tumor CE CT images[J].IEEE Transactions on Biomedical Engineering,2008,55(7):1822-1830.
  • 8Yim Yeny,Hong Helen.Correction of segmented lung boundary for inclusion of pleural nodules and pulmonary vessels in chest CT images[J].Computers in Biology and Medicine,2007,38:845-857.
  • 9Dehmeshki J,Ye XJ,Lin XY,et al.Automated detection of lung nodules in CT images using shape-based genetic algorithm[J].Computerized Medical Imaging and Graphics,2007,31:408-417.
  • 10Mastumoto S,Kundel HL,Gee JC,Gefter WB,et al.Pulmonary nodule detection in CT images with quantized convergence index fiter[J].Medical Image analysis,2006,10:343-352.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部