期刊文献+

基于多特征相似度曲线曲率检测的关键帧提取 被引量:2

Key frame extraction based on curvature detection of multi-feature similarity curve
下载PDF
导出
摘要 网络多媒体的迅猛发展和普及使得对海量视频信息进行快速和低成本管理的需求日益迫切,而关键帧可以大大减少视频索引的数据量,同时也为查询和检索视频提供了一个组织框架。针对现有关键帧提取算法存在的特征选取单一、阈值选择困难和视频类型局限性等问题,提出了一种基于多特征相似度曲线最大曲率点检测的关键帧提取方法。算法利用多特征融合的相似性度量来捕获视频内容的显著变化,弥补了单一特征对视频内容描述不充分的不足,且基于滑动窗口的检测算法无需阈值选择,可以实时、局部地提取关键帧,解决了传统算法计算量大、通用性差的问题。最后通过实验利用一种保真度评估标准验证了该算法的有效性。 With the development of network multimedia, quick and low-cost management of the massive video information is urgently needed. Key frames can decrease data quantity in video indexing and provide a framework for video retrieval and indexing. A key frame extraction method based on high-curvature points detection was proposed. First, three descriptors of color histogram, edge direction histogram and wavelet statistics were used to describe visual content, and combined to form a frame difference measure. Then the key frames were got by detecting high curvature points. Experimental results show that the proposed algorithm is rapid and efficient. It can capture precise changes dynamically in the content of video sequences, and can extract the key frames on the fly. Finally, a fidelity evaluation proves the effectiveness of the algorithm.
出处 《计算机应用》 CSCD 北大核心 2008年第12期3084-3088,共5页 journal of Computer Applications
基金 重庆市科技攻关项目(7818) 重庆市自然科学基金资助项目(2005BB2063) 重庆市教委科学技术项目(050509 060504 060517)
关键词 关键帧提取 多特征综合 高曲率检测 保真度 key-frame extraction combination of features high curvature detection fidelity
  • 相关文献

参考文献14

  • 1ZHU X Q, wu x D, FAN J P. Exploring video content structure for hierarchical summarization [ J]. Multi -media Systems, 2004, 10 (2): 98-115.
  • 2詹志飞 吴渝 李银国.一种综合全局和局部信息的关键帧提取方法.计算机应用研究,2007,24(11):1-4.
  • 3ZUZANA C, IOANNIS P. Information theory-based shot cut/fade detection and video summarization [ J]. IEEE Transactions on Circuit and Systems for Vedio Technology, 2006, 16( 1): 82 -91.
  • 4ZHUANG Y, RUI Y. Key frame extraction using unsupervised Clustering [ C]// Proceedings of ICIP 98. Chicago, USA: [ s. n. ], 1998, 1:66 -870.
  • 5HANJALIC A, ZHANG H. An integrated scheme for automated video abstraction based on unsupervised cluster validity analysis [ J]. IEEE Transactions on Circuits and Systems for Video Technology, 1999,9(8): 1280-1289.
  • 6王方石,须德,吴伟鑫.基于自适应阈值的自动提取关键帧的聚类算法[J].计算机研究与发展,2005,42(10):1752-1757. 被引量:32
  • 7KIN-WAI S, KIN-MAN L. A new key frame representation for video segment retrieval [ J]. IEEE Transactions of Circuits and Systems for Video Technology, 2005, 15(9) : 1148 -1155.
  • 8DBESIRIS D, FOTOPOULOU F. Key frame extraction in video sequences: A vantage points approach [ C]// 2007 International Workshop on Multimedia Signal Processing. Washington: IEEE, 2007.
  • 9CHETVERIKOV D. A simple and efficient algorithm for detection of high curvature points in planar curves [ C]//3rd Workshop of the Austrian Pattern Recognition Group, LNCS 2756. Berlin: Springer- Verlag, 2003:746-753.
  • 10CIOCCA G, SCHETTINI R. Dynamic key-frame extraction for vidio summarization [ C]// Proceedings of SPIE 5670. [ S. l. ] : SPIE, 2005:137 - 142.

二级参考文献11

  • 1Y. Zhuang, Y. Rui, T. S. Huang, et al. Adaptive key-frame extraction using unsupervised clustering. IEEE Int'l Conf. Image Processing, Chicago, IL, 1998.
  • 2Xiaomu Song, Guoliang Fan. Joint key-frame extraction and object-based video segmentation. IEEE Computer Society Workshop on Motion and Video Computing (WACV/MOTION2005), Breckenridge, Colorado, USA, 2005.
  • 3X. Sun, M. S. Kankanhalli, Y. Zhu, et al. Content-based representative frame extraction for digital video. IEEE Multimedia Computing and Systems, Austin, Texas, 1998.
  • 4A. Hanjalic, H. J. Zhang. An integrated scheme for automated video abstraction based on unsupervised cluster-validity analysis.IEEE Trans. Circuits System Video Technol., 1999, 9(8): 1280~ 1289.
  • 5Gao Qi, C. C ko, Liyanage C de silva. A universal scheme for content-based video representation and indexing. IEEE AsiaPacific Conference on Circuits and Systems (APCCAS 2000 ),Tianjin, 2000.
  • 6Zhu X Q,Wu X D,Fan J P,et al.Exploring video content structure for hierarchical summarization.Multimedia Systems,2004,10(2):98~115
  • 7Toklu C,Liou S P.Automatic keyframe selection for content-based video indexing and access.In:Proc.of SPIE.2000,3972:554~563
  • 8Grabmeier J,Rudolph A.Techniques of cluster algorithms in data mining.Data Mining and Knowledge Discovery,2002,6(4):303~360
  • 9Kim C,Hwang J N.An integrated scheme for object-bsed video abstraction.In:Proc.of the ACM Int.Conf.on Mutimedia.2000.303~311
  • 10Kin-Wai S,Kin-Man L,Guoping Q.A new key frame representation for video segment retrieval.IEEE Trans.On Circuits and Systems for VideoTechnology,2005,15(9):1148~1155

共引文献37

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部